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ABSTRACT

In April 2003, the U.S. Federal Energy Regulatory Commission (FERC) proposed a new market de-

sign for U.S. wholesale power markets. Core features of this design include oversight of operations by

some form of Independent System Operator (ISO), a two-settlement system consisting of a day-ahead

market supported by a parallel real-time market to ensure continual balancing of supply and demand

for power, and management of grid congestion by means of locational marginal pricing. Seven U.S.

energy regions are now operating under a variant of FERC’s market design. This dissertation under-

takes the systematic study of core features of FERC’s market design by means of intensive simulation

experiments. Specific studied issues include: the effects of generator learning behaviors on market

efficiency and supply adequacy; the effects of changes in generator learning parameters, demand-bid

price sensitivities, and generator supply-offer price caps on locational marginal price separation and

volatility over time; market efficiency implications of ISO net surplus (congestion rent) collections and

redistributions; and the effects of generator economic and physical capacity withholding on generator

net earnings and market efficiency. To carry out this research, major extensions of the AMES whole-

sale power market test bed have been developed. To encourage the accumulation of further research

findings, these extended versions of AMES have been released as open-source software.
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CHAPTER 1. OVERVIEW

1.1 Research Motivation and Background

In April 2003, the U.S. Federal Energy Regulatory Commission (FERC) proposed a new market

design for U.S. wholesale power markets. This new market design contains the following core features:

central oversight by some form of Independent System Operator (ISO); a two-settlement system con-

sisting of a day-ahead market supported by a parallel real-time market to ensure continual balancing

of supply and demand for power; and management of grid congestion by means of locational marginal

pricing (LMP), i.e., the pricing of power by the location and timing of its injection into, or with-

drawal from, the transmission grid. Versions of FERC’s market design have now been implemented

(or adopted for implementation) in U.S. energy regions in the Midwest (MISO), New England (ISO-

NE), New York (NYISO), the mid-Atlantic states (PJM), California (CAISO), the Southwest (SPP),

and Texas (ERCOT).

Wholesale power markets have special characteristics that distinguish them from other commodity

markets, as follows: (1) electricity is difficult to store in large quantities; (2) from an operational point

of view, electricity requires demand to be always met by supply; and (3) transmission lines can become

congested due to transmission limits. In addition, generation units have operating capacity limits that

must be respected.

Prior to restructuring, generation, transmission and distribution were handled jointly by vertically

integrated utility companies. Consequently, these wholesale power market characteristics were rela-

tively easy to manage. As part of restructuring, however, an effort was made to divest generation from

the management of transmission in order to introduce a greater role for market forces in generation,

hence new ways of managing these characteristics had to be found. In each restructured energy region

this has resulted in a complex set of market protocols and regulations that are conditioned on physical
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constraints and the anticipated behaviors of participant traders. Even today these protocols and reg-

ulations are still being modified and revised, accompanied by new offerings of market products and

services. Clearly a great deal of testing is needed to understand and evaluate the extent to which these

protocols and regulations ensure efficient and reliable system operations.

The general goal of my dissertation research is the systematic study and evaluation of U.S. restruc-

tured wholesale power markets. More precisely, the following objectives have been pursued:

• (1) To study the potential learning behaviors of Generation Companies (GenCos) participating

in U.S. restructured wholesale power markets.

• (2) To investigate whether the complicated rules and regulations governing market operations

encourage GenCos to engage in strategic supply offer selection that reduces overall system per-

formance measured in terms of market efficiency (i.e., non-wastage of resources) and supply

adequacy (i.e., sufficiency of offered supply to meet demand).

• (3) To investigate the dynamic and cross-sectional response of LMPs to systematic changes in

demand-bid price sensitivities and supply-offer price cap levels under varied learning specifica-

tions for the GenCos.

• (4) To explore the market efficiency implications of the net surplus (congestion rents) collected

and redistributed by ISOs in restructured wholesale power markets with grid congestion managed

by LMP.

• (5) To investigate the market power and market efficiency implications of strategic economic and

physical capacity withholding by GenCos.

Given the complicated nature of restructured wholesale power markets, I have chosen simulation as

my main investigative tool. Several companies provide wholesale power markets simulation software

packages, but it is not possible to fully access this proprietary commercial software for study and

research purposes. In addition, various academic researchers have used power market simulations, but

it is difficult to duplicate their test cases and verify their results because their code has not been publicly

released.
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Consequently, in order to carry out my dissertation research, I have developed appropriately ex-

tended versions of AMES, an agent-based test bed that captures in simplified form some of the core

features of U.S. restructured wholesale power markets. These versions have been released as open

source software to facilitate understanding and replication of my results as well as to encourage the

accumulation of further research findings.

1.2 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides a review of existing

related literature. Specifically, this review covers: (1) restructured wholesale power markets back-

ground; (2) history and usage of agent-based modeling, which is the main modeling method used in

this dissertation; (3) learning methods introduction; (4) review of other agent-based electricity mar-

ket simulation research; and (5) additional motivation for my decision to develop special open-source

software for my dissertation research.

Chapter 3 describes the main components of the AMES wholesale power market test bed as devel-

oped for this dissertation. AMES includes three types of decision-making agents: an ISO; a collection

of generation companies (GenCos); and a collection of load-serving entities (LSEs). The ISO manages

two types of markets - a day-ahead market and a real-time market - operating over an AC transmission

grid. The GenCos are learning agents that can learn over time to report strategic supply offers to the

ISO for the day-ahead market. The LSEs submit demand bids to the ISO for the day-ahead market that

consist of both fixed and price-sensitive parts. This chapter describes these different components and

their interactions in relation to real-world restructured wholesale power markets.

Chapter 4 uses the AMES wholesale power market test bed introduced in Chapter 3 to systemati-

cally investigate the effects of changes in GenCo learning parameters, demand-bid price sensitivities,

and GenCo supply-offer price caps on LMP separation and volatility over time. The primary objective

is to gain a more fundamental understanding of how learning, network externalities and GenCo piv-

otal and marginal supplier status interact to determine the distribution of LMPs both across the grid

(separation) and over time (volatility).

Chapter 5 explores the market efficiency implications of the net surplus (congestion rents) collected



www.manaraa.com

4

and redistributed by ISOs in restructured wholesale power markets with grid congestion managed by

LMP. The AMES simulation findings suggest that these ISO net surplus collections can be substantial

and tend to increase in conditions unfavorable to market efficiency. ISO yearly reports for PJM and

other energy regions indicate that actual ISO net surplus collections are in fact substantial. A practical

implication is that a more transparent public oversight of all net surplus collections and uses in whole-

sale power markets operating under LMP would be publicly prudent because these collections are not

structurally well-aligned with market efficiency objectives.

Chapter 6 investigates strategic capacity withholding by GenCos in restructured wholesale power

markets. Real-world restructured wholesale power markets are sequential open-ended games for Gen-

Cos, so they have a learning-to-learn issue. Consequently, as a preliminary step, the GenCos’ learning

methods are calibrated to their decision environment. Experiments are then conducted to investigate

GenCo economic and physical capacity withholding both separately and in combination. Results indi-

cate that economic capacity strongly dominates physical capacity withholding in terms of permitting

GenCos to substantially increase their net earnings.

Chapter 7 provides concluding remarks as well as planned future work. Appendix A gives more de-

tails about the AMES agent-based wholesale power market test bed. Appendix B and C give complete

input data for 5-bus and 30-bus test cases used in various parts of this dissertation study.
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CHAPTER 2. LITERATURE REVIEW

2.1 Restructured Wholesale Power Markets Background

In the 1990s before power industry restructuring in the U.S., electricity retail rates were regulated

by state commission, and utility companies were vertically-integrated, which means they owned gener-

ation, transmission, and the distribution network. The Energy Policy Act of 1992 had two main effects:

(1) it encouraged power market competition, and (2) it gave FERC the authority to grant access to

existing transmission lines.

In order to lower costs by improving competition and efficiency, FERC issued Orders 888 and 889

in 1996. These orders provided guidance regarding the formation of ISOs, required ISOs to provide

unbiased access to transmission, permitted to charge a rate set by FERC, and required posting data

to Open Access Same-Time Information System (OASIS). Order 888 and 889 are the foundations for

creating competitive wholesale power markets.

FERC issued Order 2000 in 1999. This order required each public utility that owns, operates, or

controls facilities for the transmission of electric energy in interstate commerce to make certain filings

with respect to forming and participating in a Regional Transmission Organization (RTO). It also en-

couraged transmission owners to join an RTO to end any discrimination by transmission owners, and it

established four characteristics (independence, regional configuration, operational authority, short-term

reliability) and eight key functions (tariff administration, congestion management, parallel path flows,

ancillary services, OASIS and capability calculations, market monitoring, planning and expansion, in-

terregional coordination) of RTOs.

The wholesale power market design proposed by FERC FERC (2003) contains the following core

features: central oversight by an independent system operator (ISO); a two-settlement system consist-

ing of a day-ahead market supported by a parallel real-time market to ensure continual balancing of
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supply and demand for power; and management of grid congestion by means of locational marginal

pricing (LMP), i.e., the pricing of power by the location and timing of its injection into, or withdrawal

from, the transmission grid.

Different versions of FERC’s market design have been implemented (or scheduled for implemen-

tation) in U.S. energy regions in the Midwest (MISO), New England (ISO-NE), New York (NYISO),

the mid-Atlantic states (PJM), California (CAISO), the Southwest (SPP), and Texas (ERCOT).

These restructured wholesale power markets are extremely complicated, involving (1) physical

constraints; (2) institutional arrangements; (3) behavioral dispositions of human participants. The com-

plexity of FERCs market design, together with the relative recency of its adoption in many regions of

the U.S. (implying a short data series), make it extremely difficult to undertake adequate efficiency and

reliability studies using standard analytical and statistical modeling tools.

One key problem for participants in restructured wholesale power markets operating under FERC’s

design is a lack of full transparency regarding market operations. Due in great part to the complexity

of the market design in its various implementations, business practices manuals and other public doc-

uments provided by ISOs are daunting to read and difficult to comprehend. Moreover, in many ISO

websites (e.g., MISO), data is only posted in partial and masked form with a significant time delay.

The result is that many participants are wary regarding market efficiency, market reliability, and market

fairness (e.g., settlement practices and market power mitigation rules). Moreover, it is more difficult

for outsiders (e.g., university researchers) to study and test the design systematically, completely and

with an open and unbiased opinion.

2.2 Agent-Based Computational Modeling

However, powerful new agent-based modeling tools have been developed to analyze this degree of

complexity and have fruitfully been applied to the study of complex economic systems, see Tesfatsion,

L. and Judd, K. L. (2006). In particular, some researchers have demonstrated the potential of agent-

based modeling tools for the study of power systems.

Tesfatsion, L. (2009b) defines that ACE is the computational study of economic processes modeled

as dynamic systems of interacting agents. Here “agent” refers broadly to a bundle of data and behavioral
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methods representing an entity constituting part of a computationally constructed world. Usually, ACE

tools have computational framework, graphical user interface and modular capabilities for expansion.

Current ACE research can be divided into four categories:

(1) Empirical understanding, to study why particular observed regularities have evolved and per-

sisted despite the absence of top-down planning and control. One examples of such regularities is

market protocols. The aim of empirical understanding is try to understand whether particular types of

observed regularities can be reliably generated from particular types of agent-based worlds.

(2) Normative understanding, to study computational laboratories for the discovery of good eco-

nomic designs using ACE models. One example is market design. The main aim is to evaluate whether

designs proposed for economic policies, institutions, or processes will result in socially desirable sys-

tem performance over time. The key issue is does a proposed or actual market design ensure efficient,

fair, and orderly market outcomes over time despite repeated attempts by traders to game the design for

their own personal advantage?

(3) Qualitative insight and theory generation, using ACE models to gain a better understanding of

economic systems through a better understanding of their full range of potential behaviors over time.

Such understanding would help to clarify not only why certain types of regularities have evolved and

persisted but also why others have not.

(4) Methodological advancement, to provide best ACE methods and tools to undertake theoreti-

cal studies of economic systems through systematic computational experiments, and to examine the

compatibility of experimentally-generated theories with real-world data. A variety of ways ranging

from careful consideration of methodological principles to the practical development of programming,

visualization, and validation tools are explored by researchers.

In ACE, the core part is how to model different agents with different attributes. Currently in soft-

ware programming implementation, agents are coded using object-oriented programming technique.

These agent objects have their private data and methods, having communications with other agent ob-

jects. Here are some featured capabilities of agents: (1) adaptation to environmental conditions, (2)

social communication with other agents, (3) goal-directed learning abilities, and (4) autonomy (self-

activation and self-determinism based on private internal processes).
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The typical experiment control process for ACE has the following steps: (1) researcher builds a

virtual world to simulate the target environment, (2) researcher creates different types of agents which

have the desired behaviors to simulate target institutions, organizations or human, (3) researcher sets

initial conditions for the virtual world and agents, (4) researcher then has no interventions for the

experiment environment and only observe how agents and the virtual world evolve over time.

In order to simulate realistically, the virtual world should reflect the main aspects of the studied

system. In particular, the agents should reflect the main aspects of the institutions, physical features,

and behaviors of the system. The most difficult part of ACE is to model both the virtual world and

agents in a proper way, grasping the essential parts for study.

One of the most active research fields of ACE is normative understanding, that is, how to use ACE

models as computational tools to propose or verify good economic designs. This is especially useful

when new designs are proposed for economic policies, institutions, or processes. ACE tools can be

used to evaluate if the proposed designs can achieve desired goals when agents have strategic behaviors

and interact with each other and the virtual world over time.

There are at least two potential advantages of ACE for dynamic market modeling: (1) permits sys-

tematic experimental study of empirical regularities, economic institutions, and dynamic behaviors of

complex market processes. (2) facilitates creative experimentation with realistically modeled market

processes by using ACE test beds, researchers can evaluate interesting conjectures of their own devis-

ing, with immediate feedback and no original programming required, ACE software permits relatively

easy modification/extension of features.

As will be demonstrated below, it is feasible to develop a useful agent-based tool to study FERC’s

market design for restructured wholesale power markets.

2.3 Learning Methods

A key aspect of learning for agents is the amount of anticipation (look-ahead) that agents employ.

The general learning process can be expressed as: at beginning, an agent is at a state in a general

environment. When a stimulus occurs, the agent reacts to this stimulus by choosing a particular action

(response). The agent then observes an outcome, and it uses this outcome to either weaken or strengthen
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the association between the state and the action in the future.

There are three types of learning: (1) unsupervised learning updates structure based on agent in-

trinsic motivation (such as curiosity, enjoyment, moral duty); (2) reinforcement learning (RL) updates

structure in response to successive rewards attained through actions taken; (3) supervised learning up-

dates structure on basis of examples of desired (or required) state-action associations provided by an

expert external supervisor.

Below is short introduction of different learning methods:

(1) Reinforcement Learning (RL). The basic intuition underlying reinforcement learning is that the

tendency to implement an action should be strengthened (reinforced) if it results in favorable outcomes

and weakened if it results in unfavorable outcomes, see Sutton, R. S. and Barto, A. G. (2000). RL is a

relatively straight-forward type of learning method in which an agent constructs associations between

states and actions. If the outcome is relatively good, the probability of future choice of this action is

increased; if the outcome is relatively bad, the probability of future choice of this action is decreased.

RL choice problems can be divided into non sequential and sequential choice problems. For non

sequential choice problems, an agent must learn a mapping from states to actions that maximizes ex-

pected immediate reward. In sequential choice problems, the agent must again learn a mapping from

states to actions, but now the actions selected by the agent may influence future situations and hence

future rewards as well as immediate rewards. Consequently, it might be advantageous for the agent to

engage in anticipatory evaluation of the future possible consequences of its current actions.

(2) Stochastic Reactive RL Roth-Erev Algorithms. This method is developed by Roth and Erev,

see Roth, A. E. and Ido, E. (1995) and Erev, I. and Roth, A. E. (1998). The form of this method is

based on observations of people’s behavior in iterated game play with multiple strategically interacting

players in various game contexts. There are two extensions found necessary relative to RL methods

developed earlier by psychologists for individuals learning in fixed environments: need to “forget”

rewards received in distant past and need for “spillover” of reward attributions across actions in early

game play to encourage experimentation and avoid premature fixation on a suboptimal chosen action.

(3) Q-Learning. Q-learning is a RL method developed by Watkins, see Watkins, C. (1989). Q-

learning does not need a model of the environment and can be used on-line in contexts where multiple
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agents are engaging in repeated non-zero sum games against unknown rivals and choosing their actions

in an anticipatory way. Q-learning works by estimating the values of state-action pairs. The Q-value

Q(s, a) is defined to be the expected discounted sum of future returns obtained by taking action a

starting from state s and following an optimal action decision rule thereafter. Once these values have

been learned, the optimal action from any state is the one with the highest Q-value.

(4) Genetic Algorithms (GA). GA uses directed search algorithm based on the mechanics of bio-

logical evolution. It was first developed by John Holland in the 1960s, and the GA remains one of the

most prominent types of methods used in evolutionary computation. A GA is an abstraction of biolog-

ical evolution. It is a method for evolving a new population of entities from an existing population of

entities, with evolution biased in favor of more fit entities . The evolution proceeds via genetic opera-

tions (recombination, mutation,...) that act directly upon the structural characteristics of the population

members.

(5) Artificial Neural Networks (ANNs). The ANNS method is inspirited from neurobiology. It has

a collection of interconnected processing units working together. The structure contains unit configura-

tion (numbers of input units, hidden units, and output units); unit connections and connection weights;

and the structure can be updated using unsupervised learning, RL, or supervised learning. For example,

ANNs by back propagation has such steps: first training examples are used to get desired input-output

associations. During this process, error equals difference between desired and actual output for any

given input, and connection weights is updated relative to error size. In summary, ANNs by back prop-

agation starts by calculating output layer error and weight correction, then “propagate back” through

previous layers.

For its easily implementation and understanding, stochastic reactive RL Roth-Erev algorithms and

Q-learning is most widely used for agent-based electricity market simulation.

2.4 Agent-based Electricity Market Simulation

There are different traditional approaches in electricity modeling, such as competitive equilibrium

models, Nash equilibrium models, supply function equilibrium models and experimental approaches.

Here is more about competitive equilibrium models: the assumption is no player attempts to game the
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market, all generators report their marginal generating costs as supply offers. The results is the tra-

ditional market performance benchmark. But equilibrium models have drawbacks: normally strategic

bidding behavior are not considered; assume that players have enough information such as other play-

ers’ characteristics and behavior. Also in reality, it is hard to get equilibrium results due to environment

changing everyday and hard to verify results.

To study the complexity of electricity markets, different modeling techniques are needed to un-

derstand market dynamics and to observe results for the appropriate design features. Comparing to

traditional analytical methods widely used in power system, Agent-Based Computational Economics

(ACE) is a fairly young research field that offers methods for realistic electricity market modeling. In

the past few years, more and more researchers have developed different kinds of agent-based models

to simulate electricity markets. In Weidlich, A. and Veit, D. (2008), Sensfuß, F. et al. (2007), and

Zhou, Z. , Chan, W. and Chow, J. (2007), surveys about agent-based simulation of wholesale electricity

markets give a lot insights of start-of-art ACE application.

In Bower, J. and Bunn, D.W. (2000), an ACE simulation model of the England and Wales electricity

market is used to compare different market mechanisms, i.e. daily versus hourly bidding and uniform

versus discriminatory pricing. This is the first ACE simulation for electricity markets.

In Zhou, Z. , Chan, W. and Chow, J. (2007), there are four agent-based electricity market simulation

tools are mentioned:

(1) Simulator for electric power industry agents (SEPIA), is developed by Honeywell Technology

Center and the University of Minnesota. Generation companies, consumers and transmission operator

are modeled as agents. Generation company agents can use both a Q-learning module and a genetic

classifier learning module to make decisions. As one of the earliest agent-based simulator for power

markets, it is a good example. And it contains two learning methods. But it lacks ISO agent, and has

some practical limitations of model, both restrict its usage.

(2) Electricity market complex adaptive systems (EMCAS), see Conzelmann, G. et al. (2004) and

EMCAS (2009), is developed by center for energy, environmental and economic systems analysis at

the Argonne national lab. Generation companies (GenCos), transmission companies operators (ISOs)

or regional transmission organizations (RTOs), demand companies (DemCos), consumers, and regula-



www.manaraa.com

12

tors are modeled as agents. An EMCAS simulation runs over six decision levels, ranging from hourly

dispatching to long-term planning. At each decision level, agents make certain decisions, including

determining electricity consumption (customer agents), unit commitment (generation companies), bi-

lateral contracting (generation and demand companies), and unit dispatch (ISO/RTO agent). EMCAS

is used by regulatory institutions interested in market design and consumer impact issues, transmis-

sion companies and market operators interested in system and market performance, and generation

companies for strategic company issues.

(3) Short-term electricity market simulator-real time (STEMS-RT), is developed by Electric Power

Research Institute (EPRI). STEMS-RT has features: agents rely on mathematical programming for

bidding decisions and the latest techniques and strategies for bidding and realistic market rules can be

added and their effects can be tested.

(4) National electricity market simulation system (NEMSIM), is developed particularly for the

Australia National Electricity Market (NEM). Interestingly, the latest NEM model is a modified and

extended version of the Agent-Based Modeling of Electricity System (AMES) model.

In later Chapters of this thesis, AMES model will be introduced and related research work will

be demonstrated separately with details. In Zhou, Z. , Chan, W. and Chow, J. (2007), AMES is the

only one open-source software for agent-based power market simulation. And even today, AMES is

still the only one open-source agent-based power market simulation package by Google search. AMES

got attention from other researchers. For example in Europe, London Metropolitan Business School

proposed a ACEGES project - Agent-based Computational Economics of the Global Energy System.

Here is a quote from its website: “The ACEGES laboratory, which will be open-source to encourage

and stimulate its cumulative development over time. This is consistent with complementary research

initiatives in USA such as the ‘AMES Wholesale Power Market Test Bed’ developed at Iowa State

University”.

2.5 Open-Source Software

Open-Source Software (OSS) expresses the idea that developers can publish their software with an

open-source license, enabling anyone to use and modify this software. Today, OSS is widely used in the
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software industry, such as for language development tools (e.g., NetBeans for Java), office document

processors (e.g., OpenOffice), and operating systems (e.g., Linux, OpenSolaris).

The OSS idea is especially useful for researchers. By studying current OSS work of peers, new

researchers can catch up easily and focus on verifying the latest new ideas. This process is much faster

than traditional research process.

The advantage of OSS is that persons interested in the software can read the detailed code, under-

stand the related design, and modify the code to suit their special needs. People do not have to “reinvent

the wheel” each time they need a specific code design for a specific problem. Instead, they can start

from a previously established foundation subjected to open peer review, and they can do so without

having to pay anything.

The exponential growth of OSS from 1993 through early 2008 is documented by Deshpande,

A. and Riehle, D. (2008); see Fig. 2.1. OSS is now widely used in the software industry, such as for

language development tools (e.g., NetBeans for Java), office document processors (e.g., OpenOffice),

and operating systems (e.g., Linux, OpenSolaris). Increasingly OSS is being written as commercial-

grade software, which could represent a significant change in the traditional proprietary approach to

software development.

Figure 2.1 OSS Project Growth from November 1993 through August 2007.
Source: Deshpande and Riehle (Deshpande, A. and Riehle, D. , 2008,
Fig.1)

In an April 2003 white paper FERC (2003), the U.S. Federal Energy Regulatory Commission

(FERC) proposed a new market design for U.S. wholesale power markets. Over 50% of U.S. generating
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capacity is now operating within the footprint of a wholesale power market restructured in compliance

with the basic provisions of FERC’s design.

These restructured wholesale power markets are complex, involving physical constraints, compli-

cated market protocols, and behavioral dispositions of human participants. Moreover, time series are

short due to the relative recency of the restructuring efforts, and the data that are available are often

released only with a delay and only in partially masked form. Consequently, it is difficult to model and

study these markets using standard analytical and statistical tools.

An additional complicating factor is that many economists are not familiar with transmission grid

aspects of power systems, so they often focus on highly simplified two-bus or three-bus systems. Con-

versely, many power engineers are not familiar with basic economic market concepts, let alone the

complicated design of restructured wholesale power markets. Modeling efforts by interdisciplinary

teams capable of addressing both engineering and economic concerns would therefore be highly desir-

able. Until recently, there has not been OSS for restructured wholesale power markets.

In response to these concerns, an interdisciplinary group of researchers at Iowa State University has

undertaken the OSS development of a wholesale power market test bed, referred to as AMES (Agent-

based Modeling of Electricity Systems). The AMES test bed permits the systematic experimental study

of strategic trading behaviors within restructured wholesale power markets operating over realistically

rendered AC transmission grids. In addition, AMES facilitates augmentation of empirical input data

with simulated input data to permit the study of a broader array of scenarios.

From the beginning, AMES was designed for research and teaching purposes rather than for commercial-

grade application. AMES is entirely developed in the widely used Java programming language in order

to facilitate readability and use. AMES is entirely OSS, combining together a collection of basic OSS

modules for learning representation, optimal power flow solution, graphic display, and other functions.

The modular and extensible OSS architecture of AMES permits users to modify and extend the code

with relative ease to suit their special needs.

The first version of AMES was released as OSS at the IEEE Power and Energy Society General

Meeting (PES GM) in 2007, and a substantially expanded second version was released as OSS at the

IEEE PES GM in 2008. Downloads, manuals, and tutorial information for all AMES version releases
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to date are accessible at the AMES homepage, see Tesfatsion, L. (2009d). AMES is also available for

downloading at the software site of the IEEE Taskforce on Open Source Software for Power Systems;

see IEEE OSS (2009).

The release of AMES as OSS is intended to encourage the cumulative development of this test

bed by multiple researchers in directions appropriate for their specific needs. It is also intended to

encourage continual dialog with market stakeholders and regulators leading to successive refinements

and improvements of the test bed.
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CHAPTER 3. AGENT-BASED WHOLESALE POWER MARKET TEST BED

CONSTRUCTION

Figure 3.1 AMES test bed architecture.

The AMES Wholesale Power Market Test Bed incorporates in simplified form the core features of

the wholesale power market design proposed by the U.S. FERC (2003); see Figure 3.1.

The simulated market operates over an AC transmission grid starting on day 1 and continuing

through a user-specified maximum day (unless terminated earlier in accordance with a user-specified

stopping rule). Each day D consists of 24 successive hours H = 00,01, ...,23.

The simulated market includes an Independent System Operator (ISO) and a collection of energy

traders consisting of Load-Serving Entities (LSEs) and Generation Companies (GenCos) distributed

across the buses of the transmission grid. Each of these entities is implemented as a software program

encapsulating both methods and data.
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Figure 3.2 AMES ISO activities during a typical day D.

3.1 Independent System Operator Agent Model

3.1.1 Introduction

The ISO undertakes the daily operation of the transmission grid within a two-settlement system

consisting of a Real-Time Market and a Day-Ahead Market. Each market is separately settled by means

of locational marginal pricing (LMP), i.e., the determination of prices for electric power in accordance

with both the location and timing of its injection into, or withdrawal from, the transmission grid.1

The objective of the ISO is the reliable attainment of appropriately constrained operational efficiency

for the wholesale power market, i.e., the maximization of total net surplus subject to generation and

transmission constraints.

3.1.2 ISO Activities

During the morning of each day D, each LSE reports a demand bid to the ISO for the day-ahead

market for day D+1. Each demand bid consists of two parts: a fixed demand bid (i.e., a 24-hour load

profile); and 24 price-sensitive demand bids (one for each hour), each consisting of a demand function
1Roughly stated, a locational marginal price (LMP) at any particular transmission grid bus k during any particular time

period T is the least cost to the system of servicing demand for one additional megawatt (MW) of power at bus k during
period T. See Liu, H. et al. (2009) for a careful discussion of LMP derivation from optimal power flow solutions.
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defined over a purchase capacity interval. LSEs have no learning capabilities; LSE demand bids are

user-specified at the beginning of each simulation run.

During the morning of each day D, each GenCo i uses its current action choice probabilities to

choose a supply offer from its action domain ADi to report to the ISO for use in all 24 hours of the

day-ahead market for day D+1.2 Each supply offer in ADi consists of a linear marginal cost function

defined over an operating capacity interval. GenCo i’s ability to vary its choice of a supply offer from

ADi permits it to adjust the ordinate/slope of its reported marginal cost function and/or the upper limit

of its reported operating capacity interval in an attempt to increase its daily net earnings.

After receiving demand bids from LSEs and supply offers from GenCos during the morning of day

D, the ISO determines and publicly reports hourly dispatch and LMP levels for the day-ahead market

for day D+1 as the solution to hourly bid/offer-based DC optimal power flow (DC-OPF) problems.

Transmission grid congestion is managed by the inclusion of congestion cost components in LMPs.

At the end of each day D, the ISO settles all of the LSE and GenCo payment obligations for the

day-ahead market for day D+1 on the basis of the LMPs for the day-ahead market for day D+1.

There are no system disturbances (e.g., weather changes) or shocks (e.g., forced generation outages

or line outages). Consequently, the binding financial contracts determined on each day D for the day-

ahead market for day D+1 are carried out as planned; traders have no need to engage in real-time market

trading.

There is no entry of traders into, or exit of traders from, the wholesale power market. LSEs and

GenCos are currently allowed to go into debt (negative money holdings) without penalty or forced exit.

The activities of the ISO on a typical day D are depicted in Fig. 3.2. Fig. 3.3 provides a schematic

depiction of simulated day-ahead market activities during a typical day D.
2In the MISO (2009), GenCos each day are actually permitted to report a separate supply offer for each hour of the

day-ahead market. In order to simplify the learning problem for GenCos, the current version of AMES restricts GenCos
to the daily reporting of only one supply offer for the day-ahead market. Interestingly, the latter restriction is imposed on
GenCos by the ISO-NE (2009) in its particular implementation of FERC’s market design. Baldick and Hogan (Baldick,
R. and Hogan, W. , 2002, pp. 18-20) conjecture that imposing such limits on the ability of GenCos to report distinct hourly
supply offers could reduce their ability to exercise market power.
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Figure 3.3 AMES day-ahead market activities during a typical day D.

3.1.3 ISO Net Surplus

The ISO net surplus extracted by the ISO during any given day D is the difference between LSE

payments and GenCo revenues for the day-ahead market for day D+1:

ISONetSur(D) =
J∑
j=1

Payj(D)−
I∑
i=1

Revi(D) ($/h) (3.1)

An illustration of ISO net surplus collection for a simple 2-bus system is depicted in Fig. 3.4. The LSE

at bus 2 pays LMP2 > LMP1 for each unit of the cleared load pFL . However, M units of this cleared load

are supplied by GenCo G1 at bus 1, who receives only LMP1 per unit. The ISO net surplus collection

is then given by M × [LMP2 - LMP1].

The standard ISO DC-OPF objective used on day D for deriving LMP and dispatch solutions for

day D+1 is the maximization of total net surplus, measured by the area TotNetSur(D) between the total

system demand and supply curves for day D+1. As carefully shown in Somani, A. and Tesfatsion,

L. (2008), TotNetSur(D) can be expressed as the following sum of component surpluses:

LSENetSur(D) + GenNetSur(D) + ISONetSur(D) (3.2)
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Figure 3.4 Illustration of ISO net surplus collection for a simple 2-bus system
with a thermal branch limit M restricting power flow from the cheaper
GenCo G1 at bus 1 to the load pL at bus 2. (Figure adapted from
Salazar, H. (2008).)

For example, TotNetSur in Fig. 3.4 is the sum of the LSE net surplus B, the GenCo net surpluses S1 and

S2 extracted by G1 and G2, and the ISO net surplus. When GenCos are learners, the ISO constructs

GenNetSur(D) in (3.2) using GenCo reported marginal costs (3.6) rather than true marginal costs (3.8).

3.1.4 Market Performance Measures

This section defines and explains the construction of the dynamic market performance measures

reported in the tables and figures used for later sections.

In the absence of GenCo learning, the dynamic test case generates a deterministic 24-hour dispatch

and LMP schedule for the day-ahead market that is repeated from one day to the next.

With GenCo learning under various demand conditions, there are different average measures:

• Avg LMP ($/MWh) denotes LMP averaged across all the buses and the 24 hours of a typical

day-ahead market schedule;

• Avg Total Demand (MW) denotes LSE total demand averaged across the 24 hours of a typical

day-ahead-market schedule;
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• Avg True TVCost ($/h) denotes GenCo true total avoidable cost averaged across total GenCos

and the 24 hours of a typical day-ahead market schedule;

• Avg LI (unit-free number) denotes the GenCo Lerner Index value averaged across total GenCos

and the 24 hours of a typical day-ahead-market schedule;

• LMP spiking ($/MWh) denotes the maximum absolute difference between successive hourly

LMPs averaged across all 24 hours when GenCos have different supply-offer price caps;

• LMP volatility range ($/MWh) denotes the as [maxLMP-minLMP] averaged across all 24 hours

when GenCos have different supply-offer price caps.

For each learning treatment, mean outcomes for the average hourly measures across thirty runs is

calculated. Mean outcomes for measures are indicated by overlines.

(a) The mean outcomes for Avg LMP ($/MWh) are calculated from a calculation day LMP outcomes

LMPk(H,r) conditioned on bus (k), hour (H), and run (r), as follows. First, for each transmission grid

bus and each hour of the calculation day, determine the average hourly LMP across all 30 runs. Second,

for each hour of the calculation day, determine the average of these run-averaged hourly LMP values

across all buses. Finally, average these bus-averaged and run-averaged hourly LMP values across all

24 hours of the calculation day to get mean Avg LMP. Using a 5-bus test case as an example,

AvgLMP =

[∑30
r=1

∑5
k=1

∑23
H=00 LMPk(H, r)

]
30 ∗ 5 ∗ 24

. (3.3)

The corresponding standard deviation is then calculated using the “N” definition (i.e., division by the

total number N=[30*5*24] of summed terms rather than N-1), as follows:√√√√[∑30
r=1

∑5
k=1

∑23
H=00[LMPk(H, r)−AvgLMP ]2

]
30 ∗ 5 ∗ 24

. (3.4)

(b) The mean outcomes for Avg Total Demand (MW) are calculated from a calculation day data as

follows. First, for each LSEs and for each hour of the calculation day, determine the LSE’s average

cleared (satisfied) price-sensitive demand across all 30 runs. Second, for each LSE and each hour of

the calculation day, add the LSE’s fixed demand and average cleared price-sensitive demand to get the

LSE’s average total demand. Third, for each hour, sum these LSE average total demands across total
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LSEs to get average total demand. Finally, average these hourly average total demands across all 24

hours of the calculation day to get mean Avg Total Demand. The corresponding standard deviation is

then calculated in the usual way using the “N” definition.

(c) The mean outcomes for Avg RepTVCost ($/h) are calculated from a calculation day data as

follows. First, for each GenCo and for each hour of the calculation day, determine the reported total

avoidable costs of total GenCos averaged across all 30 runs based on the GenCos’ reported cost and

capacity attributes together with their corresponding hourly dispatch levels as determined by the ISO.

Second, for each hour of the calculation day, determine the average of these run-averaged reported total

avoidable cost calculations across all GenCos. Third, average these GenCo-averaged and run-averaged

hourly reported total avoidable cost calculations across all 24 hours of the calculation day to get mean

Avg RepTVCost. The corresponding standard deviation is then calculated in the usual way using the

“N” definition.

(d) The Lerner Index (LI) for any GenCo i supplying a positive amount of (real) power pGi at bus

k(i) during some hour H of some day D is defined as follows:

LIi =

[
LMPk(i) −MCi(pGi)

]
LMPk(i)

. (3.5)

In (3.5), LMPk(i) denotes the LMP at bus k(i), and MCi(pGi) denotes GenCo i’s true marginal cost

evaluated at pGi.

The mean outcomes for Avg LI (unit-free number) are calculated from a calculation day data as

follows. First, for each run, for each hour of the calculation day, and for each GenCo i with a positive

power dispatch level pGi for this run and hour, determine the GenCo’s Lerner Index (3.5). Second,

for each GenCo and each hour of the calculation day, determine the average of this GenCo’s Lerner

Indices across all of the runs for which he had a positive power dispatch level for this hour. Third, for

each hour of the calculation day, determine the average of these run-averaged Lerner Indices across all

GenCos who were dispatched during this hour for at least one run. Finally, determine the average of

these GenCo-averaged and run-averaged Lerner Indices across all 24 hours of the calculation day to

get mean Avg LI. The corresponding standard deviation is then calculated in the usual way using the

“N” definition.
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(e) In supply-offer price cap experiments with GenCo learning, an inadequacy event (IE) occasion-

ally occurs in some hours in the sense that total GenCo reported capacity is insufficient to meet total

fixed demand. For hours in which IEs occur, it is assumed that all fixed demand is met with reserve

generation priced at 1000 ($/MWh).

The mean outcomes for LMP spiking ($/MWh) for learning GenCos under different supply-offer

price caps are calculated from a calculation day data with LMP set to the reserve price for hours in

which an IE occurs. More precisely, for each run r and for each of the transmission grid buses k, LMP

spiking for run r and bus k is first calculated as the maximum absolute difference between successive

hourly bus-k LMPs across all 24 hours of the calculation day. Next, for each bus k, the average of these

LMP spiking measures is determined across all 30 runs r. Finally, the average of these run-averaged

LMP spiking measures across all five buses is determined to get mean LMP spiking. The corresponding

standard deviation is then calculated in the usual way using the “N” definition.

(f) The mean outcomes for LMP volatility range ($/MWh) for learning GenCos under different

supply-offer price caps are calculated from a calculation day data with LMP set to the reserve price for

hours in which an IE occurs. More precisely, for each run r and for each of the transmission grid buses

k, the LMP volatility range is calculated as [maxLMP-minLMP] across all 24 hours of the calculation

day. Second, for each bus k, the average of these LMP volatility range measures is calculated across

all 30 runs r. Third, the average of these run-averaged LMP volatility range measures is calculated

across all five buses to get the mean LMP volatility range. The corresponding standard deviation is

then calculated in the usual way using the “N” definition.

(g) The LMP and IE frequency measures for learning GenCos under different supply-offer price

caps are determined for any designated day D as follows:

• Avg LMP with learning and IE: This measure reports average hourly LMP for day-D data with

IE reserve charges included. Stated more precisely, during any day-D hours in which an IE

occurs, i.e., in which offered supply is less than fixed demand, fixed demand is met with reserve

generation priced at 1000 ($/MWh). Avg LMP with learning and IE is then calculated across all

24 hours of day D with the LMP for IE hours taken to be 1000 ($/MWh).

• Avg LMP with learning and w/o IE: This measure reports average hourly LMP only for those
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day-D hours in which IEs do not occur. For example, suppose an IE occurs in six of the 24

hours comprising day D, meaning that a well-defined LMP solution is only obtained for each

of the remaining 18 hours. Then Avg LMP with learning and w/o IE would be calculated by

determining average hourly LMP only for the latter 18 hours of day D.

• Avg IE with learning: This measure reports the frequency of IEs for day-D data. For example,

suppose that an IE occurs in six of the 24 hours comprising day D. Then Avg IE with learning

would be reported as 100% × [6/24] = 25%.

3.2 GenCo Agent Model

3.2.1 Introduction

The objective of each GenCo is to secure for itself the highest possible net earnings each day

through the sale of power in the day-ahead market.

During the morning of each day D, each GenCo i uses its current action choice probabilities to

choose a supply offer from its action domain ADi to report to the ISO for use in all 24 hours of the

day-ahead market for day D+1.

Each supply offer in ADi consists of a linear marginal cost function defined over an operating

capacity interval. GenCo i’s ability to vary its choice of a supply offer from ADi permits it to adjust

the ordinate/slope of its reported marginal cost function and/or the upper limit of its reported operating

capacity interval in an attempt to increase its daily net earnings.

3.2.2 GenCo Supply Offers

For each day D, the single supply offer reported by GenCo i for use in each hour H of the day-ahead

market for day D+1 consists of a reported marginal cost function

MCRi (pGi) = aRi + 2bRi pGi ($/MWh) (3.6)

defined over a reported operating capacity interval

CapLi ≤ pGi ≤ CapRUi (MW ) (3.7)
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for real power pGi. The expression MCRi (pGi) denotes GenCo i’s reported sale reservation value for

energy evaluated at pGi, i.e., the minimum dollar amount it reports it is willing to accept per MWh.

To avoid operating at a point where true incremental cost exceeds payment received for its last

supplied MW of power, GenCo i’s reported marginal cost functions always lie on or above its true

marginal cost function

MCi(pGi) = ai + 2bipGi ($/MWh) . (3.8)

Also, to avoid infeasible dispatch levels, GenCo i always reports an upper operating capacity level

CapRUi that lies within GenCo i’s true operating capacity interval

CapLi ≤ pGi ≤ CapUi (MW ) . (3.9)

Note from the above discussion that each reported supply offer for GenCo i can be summarized in

the form of a vector (aRi ,bRi ,CapRUi ).

3.2.3 GenCo Supply Offer Price Cap

The goal of the ISO is the reliable attainment of appropriately constrained operational efficiency

for the wholesale power market. That is, the ISO attempts to maximize the total net surplus accruing

to LSEs and GenCos from hourly bulk power trades subject to various transmission and generation

constraints.

The ISO is concerned about loss of operational efficiency due to the possible exercise of “market

power” by GenCos through strategic reporting of supply offers. Specifically, a GenCo has market

power if the GenCo can use capacity withholding to increase its net earnings. Capacity withholding

can take two possible forms: economic withholding, i.e., reporting a higher-than-true marginal cost

function; and physical withholding, i.e., reporting a less-than-true upper operating capacity limit. As

one possible approach to GenCo market power mitigation, the ISO can impose a supply-offer price

cap (PCap). Under such a policy, the maximum sale reservation value MCRi (CapRUi ) reported by any

GenCo i cannot exceed PCap.
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3.2.4 GenCo Costs, Profits, and Net Earnings

At the beginning of any planning period, the avoidable costs of a GenCo refer to the production

costs that the GenCo can avoid incurring during the period by shutting down, by resale of purchased

assets, or by other actions. Conversely, the sunk costs of the GenCo refer to the production costs that

the GenCo cannot avoid incurring during the period because of irrevocable commitments, lack of asset

resale value, or other circumstances. Total costs refer to the sum of the two.

For the specific context at hand, it is assumed that GenCos do not have any avoidable fixed costs.

Thus, the true avoidable cost function for GenCo i for any hour H is simply the integral of its marginal

cost function, as follows:

V Costi(pGi) =
∫ pGi

0
MCi(p)dp = aipGi + bi[pGi]2 ($/h), (3.10)

The true total cost function for GenCo i for any hour H then takes the form

TCi(pGi) = [V Costi(pGi) + SCosti] ($/h), (3.11)

where pGi (in MWs) denotes any feasible real-power generation level for GenCo i in hour H and SCosti

($/h) denotes GenCo i’s pro-rated sunk costs for hour H.

Profit is defined as revenues minus true total costs. On the other hand, net earnings are defined as

revenues minus true total avoidable costs. Suppose, in particular, that GenCo i is located at bus k(i)

and is dispatched at a generation level pGi at price LMPk(i) for hour H of the day-ahead market for day

D+1. Then the profit of GenCo i for hour H of day D+1, incurred at the end of day D, is given by

πi(H,D) = LMPk(i) ∗ pGi − TCi(pGi) ($/h). (3.12)

On the other hand, the net earnings of GenCo i for hour H of day D+1, incurred at the end of day D,

are given by

NEi(H,D) = LMPk(i) ∗ pGi − V Costi(pGi) ($/h). (3.13)

The net earnings of GenCo i over all 24 hours of day D+1, incurred at the end of day D, are then given

by

NEi(D) =
H=23∑
H=00

NEi(H,D) ($). (3.14)
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As will be seen in Chapter 4 Section 4.4, the estimates of MaxDNEi for each GenCo i’s maximum

possible daily net earnings derived from its action domain ADi assuming “competitive” marginal-cost

pricing (sales price = reported marginal cost) are used. Specifically,3

MaxDNEi = 24 ∗
(

max
sR
i ∈ADi

[
HNE(sRi )

])
($), (3.15)

where sRi = (aRi ,bRi ,CapRUi ) denotes a generic supply offer in its action domain ADi and the hourly net

earnings function HNE(sRi ) ($/h) is given by

HNE(sRi ) = MCRi (CapRUi ) ∗ CapRUi − V Costi(CapRUi ) . (3.16)

3.2.5 GenCo Learning

The essential idea of stochastic reinforcement learning is that the probability of choosing an action

should be increased (reinforced) if the corresponding reward is relatively good and decreased if the

corresponding reward is relatively poor.

GenCos are autonomous energy traders with strategic learning capabilities. Each GenCo i adap-

tively chooses its supply offers (“actions”) sRi = (aRi ,bRi ,CapRUi ) from its action domain ADi on the

basis of its own past daily net earnings outcomes. This adaptive choice is implemented by means of a

variant of a stochastic reinforcement learning algorithm developed by Roth and Erev (Roth, A. E. and

Ido, E. (1995),Erev, I. and Roth, A. E. (1998)) based on human-subject experiments, hereafter referred

to as the VRE-RL algorithm. This section describes the implementation of the VRE-RL algorithm for

an arbitrary GenCo i starting from the initial day D=1.

Suppose it is the beginning of the initial day D=1, and GenCo i must choose a supply offer from

its action domain ADi to report to the ISO for the day-ahead market in day D+1. As will be seen

below, for learning purposes the only relevant attribute of ADi is that it has finite cardinality Mi ≥ 1.

Consequently, it suffices to index the supply offers in ADi by m = 1,...,Mi.

The initial propensity of GenCo i to choose supply offer m ∈ ADi is given by qim(1) for m =

1,...,Mi. AMES permits the user to set these initial propensity levels to any real numbers. However,
3Compare (3.15) with definition (3.14) for the actual net earnings of GenCo i over all 24 hours of the day-ahead market

for day D+1 under LMP pricing. The LMP received by GenCo i at a positive generation dispatch level pGi in any hour H can
exceed GenCo i’s reported marginal cost at pGi for hour H if GenCo i has a binding upper operating capacity limit at pGi.
This is why MaxDNEi is characterized as an estimate rather than a true upper bound for GenCo i’s maximum possible daily
net earnings.
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the assumption used in this study is that GenCo i’s initial propensity levels are all set equal to some

common value qi(1), as follows:

qim(1) = qi(1) for all supply offers m ∈ ADi (3.17)

Now consider the beginning of any day D ≥ 1, and suppose the current propensity of GenCo i to

choose supply offer m in ADi is given by qim(D). The choice probabilities that GenCo i uses to select

a supply offer for day D are then constructed from these propensities as follows:4

pim(D) =
exp(qim(D)/Ti)∑Mi
j=1 exp(qij(D)/Ti)

, m ∈ ADi (3.18)

In (3.18), Ti is a temperature parameter that affects the degree to which GenCo i makes use of propen-

sity values in determining its choice probabilities. As Ti→∞, then pim(D)→ 1/Mi, so that in the limit

GenCo i pays no attention to propensity values in forming its choice probabilities. On the other hand,

as Ti→ 0, the choice probabilities (3.18) become increasingly peaked over the particular supply offers

m having the highest propensity values qim(D), thereby increasing the probability that these supply

offers will be chosen.

At the end of day D, the current propensity qim(D) that GenCo i associates with each supply offer

m in ADi is updated in accordance with the following rule. Let m′ denote the supply offer that was

actually selected and reported into the day-ahead market by GenCo i in day D. Also, let NEim′(D)

denote the actual daily net earnings (3.14) attained by GenCo i at the end of day D as its settlement

payment for all 24 hours of the day-ahead market for day D+1. Then, for each supply offer m in ADi,5

qim(D + 1) = [1− ρi]qim(D) + Responseim(D) , (3.19)

4In the original algorithm developed by Roth and Erev (Roth, A. E. and Ido, E. (1995),Erev, I. and Roth, A. E. (1998)), the
choice probabilities are defined in terms of relative propensity levels. Here, instead, use is made of a “simulated annealing”
formulation in terms of exponentials.

5The response function appearing in (3.19) modifies the response function appearing in the original algorithm developed
by Roth and Erev (Roth, A. E. and Ido, E. (1995),Erev, I. and Roth, A. E. (1998)). The modification is introduced to
ensure that learning (updating of choice probabilities) occurs even in response to zero-profit outcomes, which are particularly
likely to arise in initial periods when GenCo i is just beginning to experiment with different supply offers and the risk of
overbidding to the point of non-dispatch is relatively high. See Nicolaisen, J. , Petrov, V. and Tesfatsion, L. (2001) and
Pentapalli, M. (2008) for detailed motivation, presentation, and comparative experimental tests of this modified response
function.
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Figure 3.5 AMES GenCos use stochastic reinforcement learning to determine the
supply offers they report to the ISO for the day-ahead market.

where

Responseim(D) =


[1− ei] ·NEim′(D) if m = m′

ei · qim(D)/[Mi − 1] if m 6= m′,

(3.20)

and m 6= m′ implies Mi ≥ 2. The introduction of the recency parameter ρi in (3.19) acts as a damper

on the growth of the propensities over time. The experimentation parameter ei in (3.20) permits rein-

forcement to spill over to some extent from a chosen supply offer to other supply offers to encourage

continued experimentation with various supply offers in the early stages of the learning process.

In summary, the complete VRE-RL algorithm applied to GenCo i is fully characterized once user-

specified values are set for (Mi,qi(1),Ti,ρi,ei), where: Mi denotes the number of supply offer choices

available to GenCo i in its action domain ADi; qi(1) denotes the initial propensity level in (3.17);

Ti denotes the temperature parameter in (3.18); ρi denotes the recency parameter in (3.19); and ei

denotes the experimentation parameter in (3.20). It is interesting to note, in particular, that this VRE-RL

algorithm is well-defined for any action domain ADi consisting of finitely many elements, regardless

of the precise form of these elements.

Each GenCo’s learning is implemented by means of a Java reinforcement learning module, JReLM,

developed by Gieseler, see Gieseler, C. (2005). The user can tailor the settings of each GenCo’s

learning parameters to its situation, in particular to its cost attributes, its operating capacity, and its
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anticipated net earnings.

3.2.6 GenCo Action Domain Construction

The construction of the action domain (supply offer choice set) ADi for each GenCo i is a critical

modeling issue. Empirical sensibility suggests these action domains should permit flexible choice from

among a wide range of possible supply offers, and that the degree of flexibility should be roughly

similar across the GenCos. On the other hand, computational practicality suggests the number of

supply offers included in each action domain should not be unduly large.

As explained in Section 3.2.2, at the beginning of each day D each GenCo i must choose a supply

offer sRi = (aRi ,bRi ,CapRUi ) to report to the ISO for each hour H of the day D+1 day-ahead market. Each

supply offer sRi characterizes a reported marginal cost function

MCRi (p) = aRi + 2bRi p (3.21)

defined over a reported operating capacity interval

CapLi ≤ p ≤ CapRUi (3.22)

Each GenCo i chooses its supply offers sRi from an action domain ADi with finite positive cardi-

nality Mi. In keeping with the modeling goals of empirical sensibility and computational practicality,

the action domain ADi for each GenCo i is constructed under four simplifying assumptions. First,

assume GenCo i only reports upward-sloping marginal cost functions, i.e., bRi > 0. Second, assume

GenCo i only reports non-trivial operating capacity intervals, i.e., CapLi < CapRUi . Third, assume that

GenCo i only reports marginal cost functions that lie on or above its true marginal cost function (3.8)

over the range of its reported operating capacity intervals. Fourth, assume GenCo i always reports an

upper operating capacity limit CapRUi that is less than or equal to its true upper operating capacity limit

CapUi .

Let a supply offer sRi for GenCo i be called admissible if the corresponding reported marginal cost

function MCRi (p) and reported upper operating capacity limit CapRUi are in compliance with these

four simplifying assumptions. As shown in Sun and Tesfatsion (Sun, J. and Tesfatsion, L. , 2007a,

Appendix), given any positive value for a slope-start parameter SSi for GenCo i, any 4-dimensional



www.manaraa.com

31

vector sAi consisting of four components in percentage form can be uniquely mapped into an admissible

supply offer sRi for GenCo i.

Referring to Table A.1 for more precise variable definitions, one can then construct a matrix ADi

for GenCo i characterized by three integer-valued density-control parameters M1i, M2i, and M3i (with

M1i × M2i × M3i = Mi) and three range-index parameters RIMaxLi , RIMaxUi , and RIMinCi in per-

centage form. The three density-control parameters control the number of distinct possible ordinate

values aRi , slope values bRi , and upper operating capacity limits CapRUi , respectively, that GenCo i can

report. The three range-index parameters control the range of possible ordinate values, slope values,

and upper operating capacity limits, respectively, that GenCo i can report.

The resulting matrix ADi then has the following property: For any given SSi > 0, the Mi rows of

this matrix constitute Mi distinct vectors sAi in percentage form that can be transformed uniquely into

Mi distinct admissible supply offers sRi for GenCo i. Consequently, the matrix ADi effectively con-

stitutes an action domain for GenCo i consisting of Mi admissible supply offers sRi . Moreover, if the

values for the action domain parameters (M1i,M2i,M3i,RIMaxLi ,RIMaxUi ,RIMinCi ,SSi) are set identi-

cally across the GenCos, and if the above supply-offer construction is then applied for each GenCo i

= 1,...,I, the result is a collection {ADi : i =1,...,I} of GenCo-specific action domains that have equal

cardinalities and whose supply-offer elements sR provide similar densities of coverage of the regions

lying above the GenCos’ true marginal cost curves.

As indicated in Table B.2, in this dissertation set the action domain parameters identically across

the GenCos to ensure equal cardinalities and similar densities of their action domains. In addition,

construct the first row of each action domain ADi to correspond to GenCo i’s true cost and capacity

attributes (ai, bi, CapUi ), meaning that GenCo i always has the option of reporting its true marginal cost

function and true operating capacity interval to the ISO.

3.3 LSE Agent Model

3.3.1 Introduction

The objective of each LSE is to secure for itself the highest possible net earnings each day through

the purchase of power in the day-ahead market and the resale of this power to its downstream (retail)
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customers.

3.3.2 LSE Demand Bids

For each day D, the demand bid reported by LSE j for each hour H of the day-ahead market in day

D+1 consists of a fixed demand bid pFLj(H) (MW) and a price-sensitive demand bid function

DjH(pSLj(H)) = cj(H)− 2dj(H)pSLj(H) ($/MWh) (3.23)

defined over a true purchase capacity interval

0 ≤ pSLj(H) ≤ SLMaxj(H) (MW ) (3.24)

for real power pSLj(H). The expression DjH (pSLj(H)) denotes LSE j’s true purchase reservation value

for energy evaluated at pSLj(H), i.e., the maximum dollar amount it is truly willing to pay per MWh.

3.3.3 Relative Demand-Bid Price Sensitivity Measure

Figure 3.6 Illustration of the R ratio construction for the experimental control of
relative demand-bid price sensitivity in each hour H.
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R ratio is defined as maximum potential price-sensitive demand to maximum potential total de-

mand. More precisely, for each LSE j and each hour H, let

Rj(H) =
SLMaxj(H)
MPTDj(H)

. (3.25)

In (3.25) the expression SLMaxj(H) denotes LSE j’s maximum potential price-sensitive demand in

hour H as measured by the upper bound of its purchase capacity interval (3.24), and

MPTDj(H) = [pFLj(H) + SLMaxj(H)] (MW ) (3.26)

denotes LSE j’s maximum potential total demand in hour H as the sum of its fixed demand and its

maximum potential price-sensitive demand in hour H. The construction of the R ratio is illustrated in

Figure 3.6 for the special cases R=0.0, R=0.5, and R=1.0.

To investigate LSE demand-bid price sensitivity in later experiments, the ratio R is systematically

varied starting from R=0.0 (100% fixed demand) and ending with R=1.0 (100% price-sensitive de-

mand). A positive R value indicates that the LSEs are able to exercise at least some degree of price

resistance.

3.3.4 LSE Net Surplus

Suppose LSE j, located at bus k(j), is cleared at a load level pLj(H,D) = [pFLj(H,D)+pSLj(H,D)] at

price LMPk(j)(H,D) for hour H of the day-ahead market for day D+1. The payments of LSE j over all

24 hours of day D+1, incurred at the end of day D, are

Payj(D) =
23∑

H=00

LMPk(j)(H,D) · pLj(H,D) ($) (3.27)

Using standard market efficiency analysis for buyers, see Tesfatsion, L. (2009a), the gross surplus

GSj(D) for LSE j for day D+1, incurred on day D, is then given by the revenue amount

23∑
H=00

[
r · pFLj(H,D) +

∫ pS
Lj(H,D)

0
DjH(p)dp

]
(3.28)

and the LSE net surplus for day D+1, incurred on day D, is

LSENetSur(D) =
J∑
j=1

[
GSj(D)− Payj(D)

]
(3.29)
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3.4 Day-Ahead Market Agent Model

3.4.1 Introduction

Day-ahead market is a forward market where energy is sold prior to the real operating day, in which

hourly LMPs are calculated for the next operating day based on supply offers and demand bids.

3.4.2 Day-Ahead Market Activities

• The objective of the ISO is the reliable attainment of appropriately constrained operational ef-

ficiency for the wholesale power market, i.e., the maximization of total net surplus subject to

generation and transmission constraints.

• In an attempt to attain this objective, the ISO undertakes the daily operation of a day-ahead mar-

ket settled by means of locational marginal pricing (LMP), i.e., the determination of prices for

electric power in accordance with both the location and timing of its injection into, or withdrawal

from, the transmission grid.

• During the morning of each day D, each LSE reports a demand bid to the ISO for the day-ahead

market for day D+1. Each demand bid consists of two parts: a fixed demand bid (i.e., a 24-

hour load profile); and 24 price-sensitive demand bids (one for each hour), each consisting of a

demand function defined over a purchase capacity interval. LSEs have no learning capabilities;

LSE demand bids are user-specified at the beginning of each simulation run.

• During the morning of each day D, each GenCo i uses its current action choice probabilities to

choose a supply offer from its action domain ADi to report to the ISO for use in all 24 hours of

the day-ahead market for day D+1.

Each supply offer in ADi consists of a linear marginal cost function defined over an operating

capacity interval. GenCo i’s ability to vary its choice of a supply offer from ADi permits it

to adjust the ordinate/slope of its reported marginal cost function and/or the upper limit of its

reported operating capacity interval in an attempt to increase its daily net earnings.
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• After receiving demand bids from LSEs and supply offers from GenCos during the morning of

day D, the ISO determines and publicly reports hourly dispatch and LMP levels for the day-

ahead market for day D+1 as the solution to hourly bid/offer-based DC optimal power flow

(DC-OPF) problems. Transmission grid congestion is managed by the inclusion of congestion

cost components in LMPs.

• At the end of each day D, the ISO settles all of the LSE and GenCo payment obligations for the

day-ahead market for day D+1 on the basis of the LMPs for the day-ahead market for day D+1.

• At the end of each day D, each GenCo i uses stochastic reinforcement learning to update the ac-

tion choice probabilities currently assigned to the supply offers in its action domain ADi, taking

into account its day-D settlement payment (“reward”). In particular, as depicted in Fig. 3.5, if the

supply offer reported by GenCo i on day D results in a relatively good reward, GenCo i increases

the probability of choosing this supply offer on day D+1, and conversely.

• There are no system disturbances (e.g., weather changes) or shocks (e.g., forced generation out-

ages or line outages). Consequently, the binding financial contracts determined on each day D

for the day-ahead market for day D+1 are carried out as planned; traders have no need to engage

in real-time market trading.

• Each LSE and GenCo has an initial holding of money that changes over time as it accumulates

earnings and losses.

• There is no entry of traders into, or exit of traders from, the wholesale power market. LSEs

and GenCos are currently allowed to go into debt (negative money holdings) without penalty or

forced exit.

The activities of the ISO on a typical day D are depicted in Fig. 3.2.
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3.4.3 Day-Ahead Market Clearing Mechanism

3.4.3.1 DC-OPF for Day-ahead Market Clearing Mechanism

The DC-OPF problem formulation for day-ahead market outlined below is applicable for any hour

H of any day D+1. Reference to these time dimensions is supressed for ease of notation.

The formulation relies heavily on the demand bid, supply offer, and cost function representations

developed in Subsections 3.2.2, 3.2.4 and 3.3.2. An annotated listing of all of the variables used in

the formulation is given in Tables A.1 and A.2. A more detailed discussion of this formulation can be

found in Sun and Tesfatsion (Sun, J. and Tesfatsion, L. (2007a,b, 2008)).

DC-OPF Objective Function Representation

The gross surplus of LSE j ($/h) corresponding to a price-sensitive demand level pSLj (MW) is derived

from LSE j’s price-sensitive demand bid function as follows:6

GSj(pSLj) =
∫ pS

Lj

0
Dj(p)dp = cj · pSLj − dj · [pSLj ]2 (3.30)

The total gross surplus ($/h) of LSEs is then given by

TGS(pSL) =
J∑
j=1

GSj(pSLj) , (3.31)

where

pSL =
(
pSL1, p

S
L2, · · · , pSLJ

)
(3.32)

The reported avoidable cost of GenCo i ($/h) corresponding to a generation level pGi (MW) is

derived from GenCo i’s reported marginal cost function as follows:

V CostRi (pGi) =
∫ pGi

0
MCRi (p)dp = aRi · pGi + bRi · [pGi]2 (3.33)

The reported total avoidable cost ($/h) corresponding to a vector of GenCo operating levels

pG = (pG1, pG2, · · · , pGI) (3.34)

6The gross surplus of LSE j corresponding to its fixed demand bid pF
Lj is infinite if pF

Lj > 0; a vertical demand curve
literally implies an infinite willingness to pay. For this reason, the DC-OPF objective function used by the ISO to determine
the dispatch of generation only takes into account LSE gross surplus corresponding to price-sensitive demand bids.
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is then given by

TV CR(pG) =
I∑
i=1

V CRi (pGi) (3.35)

Reported total net surplus ($/h) is calculated by the ISO from the LSE price-sensitive demand bids (if

any) and the reported GenCo supply offers, as follows:

TNSR(pSL,pG) = TGS(pSL)− TV CR(pG) (3.36)

Reported total net avoidable cost ($/h) is calculated as the negative of reported total net surplus:

TNCR(pSL,pG) = − TNSR(pSL,pG) (3.37)

The standard DC-OPF problem formulation with price-sensitive demand bids involves the min-

imization of TNCR, the reported total net avoidable cost of generation, subject to transmission and

generation capacity constraints. In objective function the standard objective function is augmented by

inclusion of a penalty function for voltage angle differences. As carefully explained in Sun, J. and

Tesfatsion, L. (2007a), this augmentation provides a number of advantages based on both physical and

mathematical considerations.

These advantages can be summarized as follows. First, the validity of the DC-OPF problem as an

AC-OPF approximation relies on an assumption of small voltage angle differences, and the augmented

objective function permits this assumption to be subjected to systematic sensitivity tests through vari-

ations in the penalty weight. Second, solution differences between the non-augmented and augmented

forms of the DC-OPF problem can be reduced to arbitrarily small levels by selecting an appropriately

small value for the penalty weight. Third, the augmented DC-OPF problem has a numerically desirable

strictly convex quadratic programming form permitting the direct determination of solution values for

LMPs and voltage angles as well as for price-sensitive demands, generation levels, and branch flows.

DC-OPF Problem

The form of the DC-OPF problem used in this study is as follows:

Minimize

TNCR(pSL,pG) + µ

 ∑
km∈BR

[δk − δm]2
 (3.38)
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with respect to LSE real-power price-sensitive demands, GenCo real-power generation levels, and volt-

age angles:

pSLj , j = 1, ..., J ; pGi, i = 1, ..., I; δk, k = 1, ...,K (3.39)

subject to

Real-power balance constraint for each bus k=1,...,K:

∑
i∈Ik

pGi −
∑
j∈Jk

pSLj −
∑

km ormk ∈ BR
Pkm =

∑
j∈Jk

pFLj (3.40)

where

Pkm = Bkm [δk − δm] (3.41)

Real-power thermal constraint for each branch km in BR:

|Pkm| ≤ PUkm (3.42)

Reported real-power operating capacity interval for each GenCo i = 1,...,I:

CapLi ≤ pGi ≤ CapRUi (3.43)

Real-power purchase capacity interval for price-sensitive demand for each LSE j = 1,...,J:

0 ≤ pSLj ≤ SLMaxj (3.44)

Voltage angle setting at angle reference bus 1:

δ1 = 0 (3.45)

The shadow price (Lagrange multiplier) solution for the real power balance constraint (3.40) at bus

k, denoted by LMPk, constitutes the locational marginal price for bus k. By the well-known envelope

theorem, LMPk ($/MWh) measures the change in the minimized DC-OPF objective function ($/h) with
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respect to a change in fixed demand (MW) at bus k; see Liu, H. et al. (2009) for a rigorous discussion.

Stated less formally, LMPk essentially measures the cost of efficiently servicing an additional MW of

fixed demand at bus k.

The special DC-OPF case in which all LSE demand bids are fixed (no price-sensitive demand) is

handled as follows. First, total gross surplus TGB is omitted from (3.38), so that TNCR reduces to

TVCR, i.e., to the reported total avoidable costs of generation. Second, the price-sensitive demand

variables pSLj , j=1,...,J, are removed from the list (3.39) of choice variables for the DC-OPF problem.

3.4.3.2 SCUC for Day-Ahead Market Clearing Mechanism

For current ISOs, the day-ahead energy market is cleared using Security-Constrained Unit Com-

mitment (SCUC) and Security-Constrained Economic Dispatch (SCED) programs to satisfy energy

demand requirements. The results of the day-ahead market clearing include hourly LMP values as well

as hourly demand and supply quantities.

Lagrangian relaxation and Benders decomposition methods are most commonly used to solve

SCUC optimization problems. The Lagrangian relaxation method uses a direct technique to get SCUC

results. Benders decomposition is used to decompose SCUC into a UC master problem and hourly

security checking sub-problems, which are coordinated through Benders cuts. Recently, mixed integer

programming (MIP) has been successfully used to solve large-scale SCUC problems; see Hobbs, B. et

al. (2001), Streiffert, D. et al. (2005), and Pinto, H. et al. (2006).

J.F. Benders introduced the Benders decomposition algorithm for solving large-scale, mixed-integer

linear programming problems (MILP); see Benders, J. F. (1962). Geoffrion generalized this method,

and made it applicable to nonlinear problems; see Geoffrion, A. M. (1972). When applying Benders

decomposition, the original problem is decomposed into a master problem and several subproblems.

Generally, the master-program is an integer problem and the subproblems are linear programs. The

final solution based on the Benders decomposition algorithm can require iterations between the master

problem and subproblems.

Fig. 3.7 presents a flowchart depicting how the Benders decomposition method is used to solve

SCUC problems. Unit commitment is treated as the master problem, which contains only binary vari-
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ables representing unit on/off and start/stop states. A feasibility problem is used for hourly security

checks using outputs of the master problem. If some violations arise, then Benders feasibility cuts are

added to the original master problem and the master problem is re-solved. If there are no violations for

the feasibility problem, the optimality problem is tested for economic dispatch. If the optimality check

is not satisfied, then Benders optimality cuts as well as feasibility cuts are added to the original master

problem, and the master problem is re-solved for another iteration.

Figure 3.7 SCUC flowchart depicting the Benders decomposition method

For SCUC implementation, one Mixed Integer Linear Programming (MILP) solver - lp solve

(V5.5) is used. The reason is (1) it is open-source software that is easy to assess, (2) although coded in

C language, it has Java language interface and easy to program.

SCUC Problem

The form of the SCUC problem is as follows:

Minimize

Z =
T∑
t=1

I∑
i=1

stiαit + sdiβit + cipit (3.46)

with respect to LSE real-power fixed demands, GenCo commitment status (on/off), start/stop status,
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real-power generation levels, and voltage angles:

pFLjt, j = 1, ..., J ; Iit, STit, SDit, pGit, i = 1, ..., I; δkt, k = 1, ...,K; t = 1, ..., T (3.47)

subject to

GenCo on/off and start status (binary) requirements:

Iit − Ii(t−1) − STit ≤ 0 (3.48)

GenCo on/off and stop status (binary) requirements:

Iit − Ii(t−1) + SDit ≥ 0 (3.49)

System reserve requirements:

I∑
i=1

CapRUi Iit ≥ Dt + Rt (3.50)

Real-power balance constraint for each bus k=1,...,K:

∑
i∈Ik

pGit −
∑

km ormk ∈ BR
Pkmt =

∑
j∈Jk

pFLjt (3.51)

where

Pkmt = Bkm [δkt − δmt] (3.52)

Real-power thermal constraint for each branch km in BR:

|Pkmt| ≤ PUkm (3.53)

Reported real-power operating capacity interval for each GenCo i = 1,...,I:

CapLi ≤ pGit ≤ CapRUi (3.54)
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Reported real-power ramping rates for each GenCo i = 1,...,I:

pGit − pGi(t−1) ≤ RampGi (3.55)

Voltage angle setting at angle reference bus 1:

δ1t = 0 (3.56)

The shadow price (Lagrange multiplier) solution for the real power balance constraint (3.51) at bus

k, denoted by LMPkt, constitutes the locational marginal price for bus k.

(1) SCUC Master Problem

The form of the SCUC master problem is as follows:

Minimize Zlower

Zlower ≥
T∑
t=1

I∑
i=1

stiαit + sdiβit (3.57)

with respect to GenCo commitment status (on/off), start/stop status:

Iit, STit, SDit, i = 1, ..., I; t = 1, ..., T (3.58)

subject to

GenCo on/off and start status (binary) requirements:

Iit − Ii(t−1) − STit ≤ 0 (3.59)

GenCo on/off and stop status (binary) requirements:

Iit − Ii(t−1) + SDit ≥ 0 (3.60)

System reserve requirements:

I∑
i=1

CapRUi Iit ≥ Dt + Rt (3.61)
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(2) SCUC Hourly Feasibility Check Problem

The form of the SCUC hourly feasibility check problem is as follows:

Minimize

LoadShedingt =
J∑
j=1

PLjt (3.62)

with respect to LSE real-power fixed demands, LSE real-power load shedings, GenCo real-power gen-

eration levels, and voltage angles:

pFLjt, pLjt, j = 1, ..., J ; pGit, i = 1, ..., I; δkt, k = 1, ...,K; t = 1, ..., T (3.63)

subject to

Real-power balance constraint for each bus k=1,...,K:

∑
i∈Ik

pGit −
∑
j∈Jk

pLjt −
∑

km ormk ∈ BR
Pkmt =

∑
j∈Jk

pFLjt (3.64)

where

Pkmt = Bkm [δkt − δmt] (3.65)

Real-power thermal constraint for each branch km in BR:

|Pkmt| ≤ PUkm (3.66)

Reported real-power operating capacity interval for each GenCo i = 1,...,I:

CapLi Iit ≤ pGit ≤ CapRUi Iit (3.67)

Voltage angle setting at angle reference bus 1:

δ1t = 0 (3.68)

If LoadShedingt > 0, then the corresponding infeasibility cut is generated as
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LoadShedingt +
I∑
i=1

λitCap
RU
i (Iit − Îit) −

I∑
i=1

λitCap
L
i (Iit − Îit) ≤ 0 (3.69)

where LoadShedingt is the objective of SCUC hourly feasibility check problem, the λit and λit are

multipliers for reported real-power operating capacity interval constraints (3.67), and Îit are GenCos

on/off status reqults from SCUC master problem.

(3) SCUC Optimality Check Problem

The form of the SCUC optimality check (economic dispatch) problem is as follows:

Minimize

Z2 =
T∑
t=1

I∑
i=1

cipit (3.70)

with respect to LSE real-power fixed demands, GenCo real-power generation levels, and voltage angles:

pFLjt, j = 1, ..., J ; pGit, i = 1, ..., I; δkt, k = 1, ...,K; t = 1, ..., T (3.71)

subject to

Real-power balance constraint for each bus k=1,...,K:

∑
i∈Ik

pGit −
∑

km ormk ∈ BR
Pkmt =

∑
j∈Jk

pFLjt (3.72)

where

Pkmt = Bkm [δkt − δmt] (3.73)

Real-power thermal constraint for each branch km in BR:

|Pkmt| ≤ PUkm (3.74)

Reported real-power operating capacity interval for each GenCo i = 1,...,I:

CapLi Iit ≤ pGit ≤ CapRUi Iit (3.75)
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Reported real-power ramping rates for each GenCo i = 1,...,I:

pGit − pGi(t−1) ≤ RampGi (3.76)

Voltage angle setting at reference bus 1:

δ1t = 0 (3.77)

If Zupper = Zlower + Z2, and Zlower and Zupper don’t satisfy converge creteria, for example,

(Zupper − Zlower)/(Zupper + Zlower) ≤ ε (3.78)

where ε is the specified converge creteria number,

then the corresponding feasibility cut is generated as

Zlower ≥
T∑
t=1

I∑
i=1

stiαit + sdiβit + Z2 +
T∑
t=1

I∑
i=1

πitCap
RU
i (Iit − Îit) −

I∑
i=1

πitCap
L
i (Iit − Îit)

(3.79)

where Z2 is the objective of SCUC optimality check (economic dispatch) problem, the πit and πit are

multipliers for reported real-power operating capacity interval constraints (3.75), and Îit are the GenCo

on/off status results from the SCUC master problem.

3.5 Real-Time Market Agent Model

Based on the day-ahead clearing of offers, bids and schedules, the real-time market becomes the

balancing market between what was cleared in the day-ahead and what is required to meet real-time

energy needs. The real-time energy market provides a continuous process on a five-minute basis for

least cost balancing of supply and demand while recognizing current operating conditions, forecasted

conditions, and generator offers.

For the real-time market, a real-time SCED optimization program is used to simultaneously bal-

ance injections and withdrawals, manage congestion, and produce LMPs. The SCED runs every five

minutes. The objective of the SCED algorithm is to minimize the cost of real-time energy procurement

over the next dispatch interval, subject to transmission network constraints and generator operating

constraints.
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The real-time settlement is the difference between the day-ahead quantity and the real-time quantity

multiplied by the real-time price. The real-time quantities are based on actual load and generation meter

data. The day-ahead quantities are based on cleared day-ahead supply offers and demand bids. The

real-time prices are calculated based on actual market conditions. The goal of a two-settlement system

is to reduce the uncertainty of the difference between the day-ahead quantity and the real-time quantity,

as well as to reduce the volatility of real-time market, since the majority of the quantity is settled in the

day-ahead market.

To date, the AMES real-time market model has not been activated because shocks and disturbances

to the system have not yet been considered, meaning all day-ahead market contracts are carried out

as planned. Future work will more fully consider the parallel operation in AMES of day-ahead and

real-time markets in the presence of shocks and disturbances.
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CHAPTER 4. KEY FINDINGS OF LMP SEPARATION AND VOLATILITY STUDY

4.1 Introduction

LMP is widely used in FERC’s market design. For example, for day-ahead market settlement, LMP

is used to calculate payment to GenCos and charges to LSEs by using LMP multiplying cleared quantity

of GenCos power supply and LSEs demand; for real-time market settlement, LMP is used to calculate

the difference between day-ahead settlement by using LMP multiplying the difference between the

day-ahead quantity and the real-time quantity of GenCos power supply and LSEs demand. So LMP is

a core part of FERC’s market design.

From FERC’s market design and ISOs’ Business Practice Manuals (BPM), LSE demand bids for

day-ahead market are mixtures of fixed (price-insensitive) demands and price-sensitive demands. When

look at real data for day-ahead market, using MISO’s data as an example, currently the price-sensitive

demand is only about 1% of the total bid-in demand for the day-ahead market. So a question is arising,

what is LMP response if systematically change the percentage of price-sensitive demand from 0% to

100%?

In addition, another related question is what if the ISO imposes a price cap on GenCo supply offers

for the day-ahead market? Do LMPs have a controllable upper limit? Will this give profit-seeking

GenCos an incentive to report smaller-than-true max capacities?

Previous studies have derived analytical expressions for LMPs at a point in time, conditional on

given grid, demand, and supply conditions; see, for example, Conejo, A. J. et al. (2005) and Or-

fanogianni, T. and Gross, G. (2007). However, only recently have researchers begun to pay attention

to the dynamic response of LMP solution paths to changed circumstances, particularly when traders

have learning capabilities permitting them to strategically adjust their trade behaviors over time.

For example, Sueyoshi, T. and Tadiparthi, G. R. (2008) use an agent-based test bed to examine
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price response under alternative transmission line limit conditions for a wholesale power market sep-

arated into multiple zones (collections of wholesale power sellers and buyers). Prices separate across

any two zones functionally disconnected by a binding constraint on their inter-tie line. Sellers and buy-

ers use reinforcement learning to determine their supply offers and demand bids (price-quantity pairs)

for day-ahead and real-time markets. One of the key experimental findings of the authors is that the

average level and volatility of day-ahead prices both increase as the number of capacity-limited inter-tie

lines is systematically increased.

This chapter undertakes a comprehensive and systematic investigation of the effects of changes in

learning parameters, demand-bid price sensitivities, and supply-offer price caps on LMP separation and

volatility over time. Each GenCo uses stochastic reinforcement learning to adaptively choose its supply

offers on the basis of its past net earnings outcomes. Careful attention is paid both to dynamic market

performance effects and to spatial cross-correlation effects. The primary objective is to gain a more

fundamental understanding of how learning, network externalities, and GenCo pivotal and marginal

supplier status interact to determine the distribution of LMPs both across the grid (separation) and over

time (volatility).1 In addition, the market operator is permitted to impose a price cap on the supply

offers submitted by GenCos for the day-ahead market in an attempt to mitigate their ability to exercise

market power.2

4.2 Experimental Design

This section explains the experimental design used to explore dynamic market performance under

systematically varied settings for the following three treatment factors: (i) GenCo learning (absent,

or present with different learning parameter settings); (ii) the degree to which LSE demand bids are

price sensitive (0 to 100%); and (iii) the level of the supply-offer price cap (infinite, high, moderate, or

low relative to average peak-hour LMP). Experimental findings for dynamic market performance are

reported in later sections.
1Although price-sensitive demand bids are permitted in U.S. restructured wholesale power markets operating under the

FERC market design, most demand is still in the form of price-insensitive loads. For example, the actual ratio of cleared
price-sensitive demand to cleared fixed demand in the MISO (2009) is currently only about 1%.

2Price-cap policies differ widely across U.S. restructured wholesale power markets. For example, MISO (2009) currently
imposes a price cap on supply offers only under extreme conditions. Consequently, this price cap is more of a “damage
control” device than a device for controlling market power.
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The experimental design for this study is based on the benchmark dynamic 5-bus test case pre-

sented in Table B.1. This benchmark case is characterized by the following structural, institutional, and

behavioral conditions:

• The wholesale power market operates over a 5-bus transmission grid as depicted in Fig. 4.1, with

branch reactances, locations of LSEs and GenCos, and initial hour-0 LSE fixed demand levels

adopted from Lally, J. (2002).3

• True GenCo cost and capacity attributes are as depicted in Figure 4.2. GenCos range from GenCo

5, a relatively large coal-fired base load unit with low marginal operating costs, to GenCo 4, a

relatively small gas-fired peaking unit with relatively high marginal operating costs.

• Demand is 100% fixed (no price sensitivity) with LSE daily fixed demand profiles adopted from

a case study presented in (Shahidehpour, M. , Yamin, H. and Li, Z. , 2002, p. 296-297); see

Fig. 4.3. Hourly load varies from light (hour 4:00) to peak (hour 17:00), which systematically

affects the market power potential of the GenCos; see Fig. 4.4.

• GenCos are non-learners, meaning they report supply offers to the ISO that convey their true

marginal cost functions (3.8) and true operating capacity limits (3.9).

• There is no supply-offer price cap.

Each experiment reported in this study extends the benchmark dynamic 5-bus test case by system-

atically varying one or more treatment factors. Three types of treatment factors are considered: GenCo

learning capabilities; LSE demand-bid price sensitivity; and an ISO-imposed supply-offer price cap.

With regard to GenCo learning, in each experiment one of the following two treatments is imposed.

Either (i) the GenCos are non-learners, or (ii) each GenCo i is a learner that makes daily use of the

VRE-RL algorithm to adjust the ordinate and slope parameters {aRi , bRi } of its reported marginal cost

function (3.6) in pursuit of increased net earnings.4

3Lally’s transmission grid configuration is now used extensively in ISO-NE/PJM training manuals to derive DC-OPF
solutions at a given point in time. An implicit assumption in these derivations is that the ISO knows the true structural
attributes of the LSEs and GenCos. No mention is made of the possibility that LSEs and GenCos in real-world ISO-managed
wholesale power markets might learn to exercise market power over time through strategic reporting of these attributes.

4Recall that a detailed description of the VRE-RL algorithm is provided in Chapter 3 Section 3.2.5. In this study the
GenCos are only allowed to exercise economic withholding of capacity through strategic marginal cost reporting. In separate
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Figure 4.1 Transmission grid for the benchmark dynamic 5-bus test case.

For the learning treatments, the action domain ADi for each GenCo i is constructed as in Li, H. ,

Sun, J. and Tesfatsion, L. (2008) to include 100 candidate supply offer choices, and the VRE-RL

recency and experimentation parameters ri and ei for each GenCo i are fixed at 0.04 and 0.96, respec-

tively, in keeping with the VRE-RL parameter sensitivity results determined in Pentapalli, M. (2008).

A range of settings is then systematically tested for each GenCo i’s VRE-RL initial propensity and

temperature parameters q(1)i and Ti; see Table B.2 for a precise listing of tested values.

When GenCos have learning capabilities, random effects are present in their supply offer selections.

To control for these random effects, thirty seed values is generated via the standard Java class “random;”

see Table B.2 for a listing of these seed values. For each learning treatment these thirty seed values are

then used to implement thirty distinct runs, each 1000 simulated days in length.

The second treatment factor is the ratio R of maximum potential price-sensitive demand to maxi-

mum potential total demand. The construction of the R ratio is illustrated in Figure 3.6 for the special

case R=0.0, R=0.5, and R=1.0.

For price-sensitive demand experiments to start by setting all of the R values (3.25) for each LSE

j and each hour H equal to R=0.0 (the 100% fixed-demand case). Then systematically increase R

by tenths, ending with the value R=1.0 (the 100% price-sensitive demand case). A positive R value

indicates that the LSEs are able to exercise at least some degree of price resistance. Compare, for

example, the true total demand curves in Fig. 4.4 with 100% fixed demand (R=0.0) to the true total

studies Li, H. and Tesfatsion, L. (2009d) and Chapter 6 the consequences of permitting GenCos to engage in physical
withholding of capacity through strategic reporting of their operating capacity limits is explored.
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Figure 4.2 GenCo true marginal cost functions and true capacity attributes for the
benchmark dynamic 5-bus test case.

demand curves in Fig. 4.5 with 20% potential price-sensitive demand (R=0.2).

The maximum potential price-sensitive hourly demands SLMaxj(H) for each LSE j are thus sys-

tematically increased across experiments. However, to control for confounding effects arising from

changes in overall demand capacity as follows: For each LSE j and each hour H, the denominator

value MPTDj(H) in (3.26) is held constant across experiments by appropriate reductions in the fixed

demand pFLj(H) as SLMaxj(H) is increased. Specifically, MPTDj(H) is set equal across all experiments

to BPFLj(H), the hour-H fixed-demand level BPF (H) for LSE j depicted in Table B.1 for the benchmark

dynamic 5-bus test case. Consequently, for each tested R value,

pFLj(H) = [1−R] ∗BPFLj(H) ; (4.1)

SLMaxj(H) = R ∗BPFLj(H). (4.2)

Moreover, as R is incrementally increased from R=0.0 to R=1.0, to control for confounding effects

arising from changes in the LSEs’ price-sensitive demand bids by holding fixed the ordinate and slope
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Figure 4.3 Daily LSE fixed demand (load) profiles for the benchmark dynamic
5-bus test case.

values {(cj(H),dj(H)): H=00,...,23} for each LSE j. A listing of the specific numerical values used can

be found in Table B.3.

In particular, for conceptual consistency with the benchmark dynamic 5-bus test case with no

price-sensitive demand (R=0.0), LSE j’s ordinate value cj(H) is set equal to the hour-H LMP solu-

tion LMPk(j)(H) for this benchmark case, where k(j) denotes the particular bus k at which LSE j is

located. This guarantees that no price-sensitive demand would be cleared in the benchmark case even

if the LSEs were permitted to report price-sensitive demand bids as well as fixed demand bids. Also,

the ratio cj(H)/2dj(H) for each LSE j is set to ensure that it is greater or equal to the SLMaxj(H) value

determined by (4.2), as required by the admissibility restrictions imposed on LSE j’s demand function

DHj(p) in Table A.1.

The third treatment factor is PCap ($/MWh), an ISO-imposed supply-offer price cap. In experi-

ments in which PCap is imposed, GenCos are not permitted to report marginal costs (sale reservation

values) that rise above PCap. Consequently, each GenCo i selects its daily supply offer so that its

maximum reported sale reservation value, MCRi (CapRUi ), does not exceed PCap.

As will be seen in the following Section 4.5 – in particular Table 4.8 – the mean outcome for

average hourly LMP with GenCo learning and with 100% fixed demand (R=0.0) is approximately 140

($/MWh). Therefore six PCap settings are tested centered around this “normal” value, as follows: (a)

no PCap; (b) a high value 160; (c) a normal value 140; (d) a moderately low value 120; (e) a low value
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Figure 4.4 True total supply and demand curves for hours 4:00 and 17:00 for the
benchmark dynamic 5-bus test case. Demand for this benchmark case
is 100% fixed (R=0.0).

100; and (f) a very low value 80.

The latter sections use the experimental design to test the effects on dynamic market performance

of changes in GenCo learning capabilities, demand-bid price-sensitivities, and supply-offer price caps.

Dynamic market performance is characterized by the following seven measures:

• total GenCo daily net earnings (Total Gen DNE)

• average hourly cleared price-sensitive and fixed demand (Avg Total Demand) for LSEs

• average hourly true total avoidable costs (Avg TrueTVCost) for GenCos

• average hourly reported total avoidable costs (Avg RepTVCost) for GenCos

• average hourly Lerner index values (Avg LI) for GenCos

• LMP spiking across 24 hours of a designated day

• LMP volatility range across 24 hours of a designated day
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Figure 4.5 True total supply and demand curves for hours 4:00 and 17:00 for the
benchmark dynamic 5-bus test case extended to include 20% potential
price-sensitive demand (R=0.2).

For no-learning treatments, each of these measures for a typical day is calculated. For learning

treatments, the mean of each of these measures across thirty runs for the final (1000th) simulated day

are calculated. The precise definitions and calculations of these measures (with accompanying standard

deviations) are provided in Section 3.1.4.

4.3 Without GenCo Learning Benchmark Case

Fig. 4.6 depicts hourly bus LMP levels, GenCo dispatch levels, and branch power flows during a

typical day for the benchmark dynamic 5-bus test case. This benchmark case involves non-learning

GenCos, 100% fixed demand, and no supply-offer price cap. Tables 4.1 through 4.3 provide more

detailed numerical data on hourly bus LMPs, GenCo dispatch levels and branch power flows.
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Table 4.1 Hourly bus LMPs during a typical day for the benchmark dynamic
5-bus test case. LMP k denotes the LMP at bus k.

Hour LMP 1 LMP 2 LMP 3 LMP 4 LMP 5
00 15.17 35.50 31.65 21.05 16.21
01 15.16 33.95 30.39 20.60 16.13
02 15.16 32.92 29.55 20.30 16.07
03 15.16 32.40 29.13 20.15 16.04
04 15.15 31.89 28.72 20.00 16.01
05 15.16 32.15 28.93 20.07 16.03
06 15.16 32.40 29.13 20.15 16.04
07 15.16 33.44 29.98 20.45 16.10
08 15.17 36.01 32.06 21.20 16.24
09 15.18 38.08 33.74 21.81 16.35
10 15.18 38.60 34.16 21.96 16.38
11 15.18 38.85 34.37 22.03 16.39
12 15.18 38.60 34.16 21.96 16.38
13 15.18 38.08 33.74 21.81 16.35
14 15.17 37.82 33.53 21.73 16.34
15 15.17 37.82 33.53 21.73 16.34
16 15.18 38.85 34.37 22.03 16.39
17 14.02 78.24 66.07 32.61 17.32
18 15.07 45.56 39.78 23.90 16.64
19 15.18 39.88 35.20 22.33 16.45
20 15.18 39.63 35.00 22.26 16.43
21 15.18 39.11 34.57 22.11 16.41
22 15.17 37.82 33.53 21.73 16.34
23 15.17 36.28 32.28 21.28 16.25

Table 4.2 Hourly GenCo dispatch levels during a typical day for the benchmark
dynamic 5-bus test case.

Hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5
00 110.00 13.87 332.53 0.00 443.59
01 110.00 13.44 269.45 0.00 437.54
02 110.00 13.16 227.71 0.00 433.54
03 110.00 13.02 206.66 0.00 431.52
04 110.00 12.87 185.99 0.00 429.54
05 110.00 12.94 196.39 0.00 430.53
06 110.00 13.02 206.66 0.00 431.52
07 110.00 13.30 248.77 0.00 435.55
08 110.00 14.01 353.20 0.00 445.58
09 110.00 14.60 437.02 0.00 453.63
10 110.00 14.73 458.06 0.00 455.64
11 110.00 14.80 468.39 0.00 456.63
12 110.00 14.73 458.06 0.00 455.64
13 110.00 14.60 437.02 0.00 453.63
14 110.00 14.51 426.67 0.00 452.62
15 110.00 14.51 426.67 0.00 452.62
16 110.00 14.80 468.39 0.00 456.63
17 2.07 0.00 520.00 108.88 522.63
18 107.34 6.11 520.00 0.00 474.15
19 110.00 15.08 510.08 0.00 460.63
20 110.00 15.01 499.83 0.00 459.64
21 110.00 14.88 478.75 0.00 457.63
22 110.00 14.51 426.67 0.00 452.62
23 110.00 14.08 363.95 0.00 446.60

CapU 110.00 100.00 520.00 200.00 600.00
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Figure 4.6 Hourly bus LMP levels, GenCo dispatch levels, and branch power
flows during a typical day for the benchmark dynamic 5-bus test case
(no GenCo learning).
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Table 4.3 Hourly branch power flows during a typical day for the benchmark dy-
namic 5-bus test case.

Hour 1–2 1–4 1–5 2–3 3–4 4–5
00 250.00 129.65 -255.77 -100.00 -67.47 -187.82
01 250.00 126.71 -253.27 -72.95 -80.31 -184.27
02 250.00 124.77 -251.61 -55.05 -88.81 -181.93
03 250.00 123.79 -250.77 -46.02 -93.09 -180.75
04 250.00 122.83 -249.95 -37.16 -97.30 -179.58
05 250.00 123.30 -250.37 -41.62 -95.19 -180.16
06 250.00 123.79 -250.77 -46.02 -93.09 -180.75
07 250.00 125.74 -252.45 -64.09 -84.52 -183.11
08 250.00 130.61 -256.60 -108.86 -63.26 -188.98
09 250.00 134.52 -259.92 -144.80 -46.18 -193.70
10 250.00 135.49 -260.76 -153.83 -41.90 -194.88
11 250.00 135.97 -261.17 -158.25 -39.81 -195.45
12 250.00 135.49 -260.76 -153.83 -41.90 -194.88
13 250.00 134.52 -259.92 -144.80 -46.18 -193.70
14 250.00 134.03 -259.51 -140.37 -48.30 -193.11
15 250.00 134.03 -259.51 -140.37 -48.30 -193.11
16 250.00 135.97 -261.17 -158.25 -39.81 -195.45
17 250.00 98.83 -346.76 -198.62 -63.15 -175.88
18 250.00 137.64 -274.19 -180.73 -29.93 -199.97
19 250.00 137.91 -262.83 -176.14 -31.32 -197.80
20 250.00 137.43 -262.42 -171.73 -33.41 -197.22
21 250.00 136.46 -261.58 -162.70 -37.69 -196.05
22 250.00 134.03 -259.51 -140.37 -48.30 -193.11
23 250.00 131.10 -257.02 -113.48 -61.07 -189.58

Max Cap 250.00 150.00 400.00 350.00 240.00 240.00

4.4 GenCo Learning Calibration for Economical Capacity Withholding

As a prelude to conducting experiments with GenCo learning, first used intensive parameter sweeps

to determine suitable settings for two potentially critical VRE-RL learning parameters for each GenCo

i. In particular, as indicated in Table B.2, a range of values for αi and βi are systematically tested,

defined as follows:

• GenCo i’s net earnings aspirations at the beginning of the initial day 1, as captured by the ratio αi

of its initial propensity level qi(1) to its maximum possible daily net earnings MaxDNEi defined

in (3.15);

• the ratio βi = qi(1)/Ti of GenCo i’s initial propensity level qi(1) to its temperature parameter Ti.

Figure 4.7 depicts experimental findings for mean Total Gen DNE outcomes under alternative set-

tings for

α =
qi(1)

MaxDNEi
, β =

qi(1)
Ti

, i = 1, . . . , I (4.3)
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Figure 4.7 A 2D depiction of mean outcomes for total GenCo daily net earn-
ings on day 1000 for the benchmark dynamic 5-bus test case extended
to include GenCo learning under alternative settings for the two key
stochastic reinforcement learning parameters (α, β).

assuming common α and β values across GenCos, 100% fixed demand, and no supply-offer price

cap. An interesting pattern is immediately evident. The (α,β) combinations associated with the

highest mean Total Gen DNE outcomes lie along a nonlinear ridge line spanning combinations from

(high,high)=(1,100) in the northwest corner to (low,moderate)=(1/24,2) in the south-central region.

What causes this nonlinear coupled dependence of mean Total Gen DNE on α and β?

The settings for α and β have distinct but correlated effects on the degree to which each GenCo

experiments with different actions, i.e., different ordinate and slope values aR and bR for its reported

marginal cost function (3.6). All else equal, high α values reflecting optimistically high initial net earn-

ings expectations tend to induce experimentation with many different actions due to “disappointment”

with the net earnings outcomes that result from each choice. Conversely, low α values reflecting pes-

simistically low initial net earnings expectations tend to induce premature fixation on an early chosen
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action due to the “surprisingly high” net earnings that result from this choice.

High β values reflecting high cooling levels (low temperature parameter settings) amplify the ten-

dency to premature fixation in the case of low α values by amplifying differences in propensity levels

across action choices. Moderately low β values can prevent premature fixation by dampening the ef-

fects of propensity differences on action choice probabilities. However, extremely low β values result

in action choice probability distributions that are essentially uniform across each GenCo’s action do-

main, negating all GenCo efforts to learn which actions result in the highest daily net earnings. This

deleterious effect is seen in the uniformly low mean Total Gen DNE outcomes achieved in Fig. 4.7 for

the lowest tested β levels 1 and 1/2.

Figure 4.7 depicts mean total GenCo daily net earnings on day 1000 for the benchmark dynamic

5-bus test case extended to include GenCo learning under alternative settings for α and β, assuming

these parameter values are set commonly across all GenCos. Two interesting findings are immediately

evident. First, learning parameter specification substantially affects outcomes. Second, the highest

outcomes are associated with “sweet spot” (α,β) combinations that lie along a nonlinear ridge line

ranging from (α,β)=(1,100) in the northwest corner to (α,β)=(1/24,2) in the south-central region. The

particular sweet-spot settings (α, β) = (1,100) are used in all of the learning treatments reported in the

remainder of this study.

4.5 Pure GenCo Learning Experiments

Fig. 4.8 depicts hourly LMP levels, GenCo dispatch levels, and branch power flows for day 1000 of

a typical run (ID=03) for this benchmark case after extension to include learning GenCos. Tables 4.4

through 4.6 provide more detailed numerical data regarding the effects of learning on hourly bus LMPs,

GenCo dispatch levels and branch power flows.
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Figure 4.8 Hourly bus LMP levels, GenCo dispatch levels, and branch power
flows for a typical run (ID=03) of the benchmark dynamic 5-bus test
case extended to include GenCo learning.
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Table 4.4 Hourly bus LMPs during day 1000 for a typical run (ID=03) of the
benchmark dynamic 5-bus test case extended to include GenCo learn-
ing.

Hour LMP 1 LMP 2 LMP 3 LMP 4 LMP 5
00 24.65 222.89 185.33 82.04 34.83
01 25.65 202.76 169.20 76.92 34.74
02 26.31 189.45 158.54 73.54 34.68
03 26.64 182.74 153.17 71.83 34.65
04 26.97 176.15 147.89 70.16 34.62
05 26.80 179.45 150.53 71.00 34.64
06 26.64 182.74 153.17 71.83 34.65
07 25.98 196.17 163.92 75.25 34.71
08 24.32 229.48 190.61 83.72 34.85
09 23.00 256.21 212.03 90.52 34.97
10 22.67 262.92 217.40 92.22 35.00
11 22.50 266.22 220.04 93.06 35.01
12 22.67 262.92 217.40 92.22 35.00
13 23.00 256.21 212.03 90.52 34.97
14 23.16 252.92 209.39 89.68 34.95
15 23.16 252.92 209.39 89.68 34.95
16 22.50 266.22 220.04 93.06 35.01
17 15.65 396.16 324.07 125.81 35.18
18 21.67 282.94 233.44 97.31 35.08
19 21.84 279.52 230.70 96.44 35.07
20 22.01 276.23 228.06 95.61 35.05
21 22.34 269.52 222.69 93.90 35.02
22 23.16 252.92 209.39 89.68 34.95
23 24.15 232.90 193.35 84.59 34.87

Comparing Figures 4.6 and 4.8, the most significant pure learning effect is clearly the substantial

increase in LMP outcomes for each bus in each hour, ranging from an approximate 2-fold increase for

buses 1 and 5 to an approximate 6-fold increase for buses 2 and 3. In addition, learning also affects the

GenCo dispatch levels. For example, the dispatch level for the peaker-unit GenCo 4 located at bus 4 is

higher in each hour whereas the dispatch level for the small GenCo 1 located at bus 1 is markedly lower

in every hour except the peak-demand hour 17. In contrast, branch power flows appear to be relatively

unaffected.

Tables 4.1 through 4.6 provide more detailed numerical data regarding the effects of learning on

hourly bus LMPs, GenCo dispatch levels and branch power flows. These numerical data help to explain

the learning effects seen in Figures 4.6 and 4.8.

Consider, first, the benchmark no-learning case. To understand the pattern of LMPs reported in

Table 4.1 for this benchmark case, it is important to understand congestion effects. Note from Table 4.3

that the branch 1-2 connecting bus 1 and bus 2 is congested in every hour; all other branches are

uncongested in every hour.
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Table 4.5 Hourly GenCo dispatch levels during day 1000 for a typical run (ID=03)
of the benchmark dynamic 5-bus test case extended to include GenCo
learning.

Hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5
00 37.43 26.39 316.95 36.74 482.50
01 40.94 30.35 257.04 28.21 473.86
02 43.26 32.97 217.45 22.57 468.16
03 44.42 34.29 197.48 19.72 465.28
04 45.57 35.59 177.86 16.93 462.45
05 45.00 34.94 187.67 18.33 463.87
06 44.42 34.29 197.48 19.72 465.28
07 42.09 31.65 237.42 25.41 471.03
08 36.28 25.09 336.56 39.53 485.32
09 31.62 19.83 416.10 50.86 496.78
10 30.45 18.51 436.06 53.70 499.66
11 29.88 17.86 445.87 55.10 501.07
12 30.45 18.51 436.06 53.70 499.66
13 31.62 19.83 416.10 50.86 496.78
14 32.20 20.48 406.29 49.46 495.37
15 32.20 20.48 406.29 49.46 495.37
16 29.88 17.86 445.87 55.10 501.07
17 5.80 0.00 520.00 109.69 518.10
18 26.97 14.57 495.63 62.19 508.25
19 27.56 15.25 485.46 60.74 506.78
20 28.13 15.89 475.66 59.34 505.36
21 29.30 17.22 455.69 56.50 502.49
22 32.20 20.48 406.29 49.46 495.37
23 35.68 24.42 346.73 40.98 486.79

CapU 110.00 100.00 520.00 200.00 600.00

The congestion on branch 1-2 creates a potential load pocket for GenCo 3 in the following sense.

As seen from the depiction of the 5-bus transmission grid in Figure 4.1, the fixed load from LSEs 1,

2, and 3 is located at buses 2, 3, and 4, and GenCo 3 at bus 3 is centrally located relative to this load.

The congestion on branch 1-2 results in the semi-islanding of this load from the less-expensive power

of GenCos 1, 2, and 5 located at buses 1 and 5. Consequently, the ISO must dispatch GenCo 3 to meet

the bulk of this load, particularly during the peak-demand hour 17, no matter what the expense.

To fully understand the pattern of hourly bus LMPs reported in Table 4.1 for the benchmark no-

learning case, however, it is also essential to consider limits on generation operating capacity. A GenCo

i is said to be marginal if it is operating at a point where it is not constrained either by its lower or

upper operating capacity limits CapLi and CapUi in (3.9). As is well known, the LMP at each bus with

a marginal GenCo is given by the marginal cost of this GenCo, whereas the LMP at each bus without

a marginal GenCo is given by a weighted linear combination of the marginal costs of the marginal

GenCos; see, e.g., Orfanogianni, T. and Gross, G. (2007).
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Table 4.6 Hourly branch power flows during day 1000 for a typical run (ID=03)
of the benchmark dynamic 5-bus test case extended to include GenCo
learning.

Hour 1–2 1–4 1–5 2–3 3–4 4–5
00 250.00 114.42 -300.66 -100.00 -83.05 -181.91
01 250.00 114.62 -293.38 -72.93 -92.69 -180.54
02 250.00 114.75 -288.57 -55.04 -99.06 -179.64
03 250.00 114.82 -286.15 -46.02 -102.27 -179.18
04 250.00 114.88 -283.77 -37.16 -105.43 -178.74
05 250.00 114.85 -284.96 -41.59 -103.85 -178.96
06 250.00 114.82 -286.15 -46.02 -102.27 -179.18
07 250.00 114.68 -291.00 -64.07 -95.85 -180.09
08 250.00 114.35 -303.04 -108.86 -79.90 -182.35
09 250.00 114.09 -312.70 -144.80 -67.10 -184.16
10 250.00 114.02 -315.12 -153.82 -63.89 -184.62
11 250.00 113.99 -316.32 -158.25 -62.31 -184.84
12 250.00 114.02 -315.12 -153.82 -63.89 -184.62
13 250.00 114.09 -312.70 -144.80 -67.10 -184.16
14 250.00 114.12 -311.51 -140.37 -68.68 -183.94
15 250.00 114.12 -311.51 -140.37 -68.68 -183.94
16 250.00 113.99 -316.32 -158.25 -62.31 -184.84
17 250.00 98.83 -343.09 -198.62 -63.15 -175.09
18 250.00 113.83 -322.36 -180.73 -54.30 -185.97
19 250.00 113.86 -321.12 -176.14 -55.94 -185.74
20 250.00 113.89 -319.93 -171.71 -57.52 -185.52
21 250.00 113.96 -317.51 -162.69 -60.73 -185.06
22 250.00 114.12 -311.51 -140.37 -68.68 -183.94
23 250.00 114.32 -304.27 -113.46 -78.26 -182.58

Max Cap 250.00 150.00 400.00 350.00 240.00 240.00

From Table 4.2, it is seen that GenCo 1 is only marginal during the peak-demand hour 17 and the

non-peak hour 18, whereas GenCo 2 and GenCo 3 are marginal in every hour except hour 17. Also,

GenCo 4 is only marginal during the peak-demand hour 17, and GenCo 5 is marginal in every hour.

It follows that the LMP at bus 1 (with GenCos 1 and 2) is determined at the peak-demand hour 17

by the marginal cost of the marginal GenCo 1. For all non-peak hours apart from hour 18 the LMP at

bus 1 is determined by the marginal cost of the marginal GenCo 2. For the non-peak hour 18 the LMP

at bus 1 is determined by the equalized marginal costs of the marginal GenCos 1 and 2. Note from

Figure 4.2 that GenCo 1 is a relatively cheap generation source, and GenCo 2 is only slightly more

expensive than GenCo 1. Consequently, as seen in Table 4.1, the LMP at bus 1 is relatively low in all

hours, particularly so in hours 17 and 18 when GenCo 1 is marginal. Similar arguments explain the

relatively low LMP level for bus 5 in all hours.

In contrast, apart from hours 17 and 18 the LMP at bus 2 (with no generation) is determined as a

weighted linear combination of the marginal costs of the marginal GenCos 2, 3, and 5. For the peak-
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demand hour 17 the LMP at bus 2 is determined as a weighted linear combination of the marginal costs

of the marginal GenCos 1, 4, and 5. For the non-peak hour 18 the LMP at bus 2 is determined as a

weighted linear combination of the marginal costs of the marginal GenCos 1, 2, and 5. As seen in

Table 4.1, the need to dispatch the expensive peaker unit, GenCo 4, during the peak-demand hour 17

due to the congestion on branch 1-2 results in an approximate doubling of the LMP at bus 2 during this

hour relative to other hours. Similar arguments explain the relatively large bump in LMP at bus 3 and

bus 4 during hour 17.

Now consider, instead, the hourly bus LMP outcomes reported in Table 4.4 for the benchmark

case extended to include learning GenCos. Comparing these outcomes to the outcomes reported in

Table 4.1 for the no-learning case, it is immediately seen that the LMPs attained with learning GenCos

are substantially higher in all hours. What explains this?

As seen in Table 4.6, the branch 1-2 connecting bus 1 and bus 2 is congested at all hours with

learning GenCos, just as it was for non-learning GenCos. On the other hand, comparing the dispatch

outcomes reported in Table 4.5 for learning GenCos with the dispatch outcomes reported in Table 4.2

for non-learning GenCos, it is seen that learning changes these dispatch levels and hence the marginal

status of the GenCos. In particular, every GenCo is now marginal in every hour, apart from GenCo 2

and GenCo 3 in the peak-demand hour 17.

The explanation for these dispatch effects is that the learning GenCos, in particular the two largest

GenCos 3 and 5, quickly learn to report higher-than-true marginal costs to the IS0. This economic

withholding means that the dispatch merit order calculated by the ISO from reported marginal cost

functions no longer coincides with the true merit order based on true marginal cost functions, which in

turn affects the ISO’s dispatch schedule.

Economically, however, the most serious effect of this economic withholding is not the changed

dispatch levels per se but rather the resulting increase in LMPs. The price rise relative to the benchmark

no-learning case is particularly dramatic for the load-pocket buses 2 through 4 during the peak-demand

hour 17.

The opportunity for learning GenCos to profitably undertake substantial economic withholding

arises from the fact that LSE demand in the benchmark case is 100% fixed (no price sensitivity). The
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ISO is forced to meet fixed demand in every hour, no matter how expensive the required generation

might be. Consequently, the GenCos rapidly come to understand, through trial-and-error reinforcement

learning, that their most profitable strategy is to implicitly collude on high reported marginal cost

functions. Since all GenCos end up exercising economic withholding, the overall effect on the dispatch

schedule and resulting branch power flows is relatively modest; but the increase in hourly bus LMPs is

substantial.

These findings suggest the importance of encouraging a greater sensitivity of LSE demand to price.

The following subsection explores what happens when LSE demands are systematically varied from

100% fixed to 100% price sensitive, both with and without GenCo learning.

4.6 Price-Sensitivity Experiments without GenCo Learning

Table 4.7 presents dynamic market performance findings for the benchmark dynamic 5-bus test

case extended to include alternative settings for R (relative demand-bid price sensitivity).

Table 4.7 Average hourly LMP, total demand, true total avoidable costs, and the
GenCo Lerner index during a typical day for the benchmark dynamic
5-bus test case extended to include demand varying from R=0.0 (100%
fixed) to R=1.0 (100% price sensitive).

R Avg LMP Avg Total Demand Avg TrueTVCost Avg LI
0.0 25.18 318.21 3,779.17 0.0056
0.1 24.51 299.19 3,439.32 0.0042
0.2 23.92 279.69 3,100.91 0.0036
0.3 23.33 259.85 2,765.58 0.0032
0.4 22.72 240.18 2,446.54 0.0029
0.5 22.10 220.88 2,143.65 0.0026
0.6 21.35 204.09 1,888.46 0.0022
0.7 20.49 188.67 1,662.19 0.0013
0.8 19.49 175.74 1,481.15 0.0000
0.9 18.27 169.68 1,408.55 0.0000
1.0 17.04 163.87 1,349.49 0.0000

As seen in Table 4.7, in the absence of GenCo learning an incremental increase in R starting from

the benchmark case R=0.0 (100% fixed demand) has the usual intuitively-expected effects. Avg LMP,

Avg Total Demand, Avg TrueTVCost, and Avg LI all monotonically decline with increases in R. Indeed,

except for the presence of binding operating-capacity constraints for some of the GenCos for the cases

in which Avg Total Demand is relatively high, all of the Avg LI outcomes in the absence of GenCo
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learning would be zero.5

4.7 Price-Sensitivity Experiments With GenCo Learning

Table 4.8 presents parallel mean-outcome findings for a modified version of this experiment in

which GenCos have learning capabilities and report strategically chosen marginal cost functions to the

ISO.

Table 4.8 Mean outcomes (with standard deviations) for average hourly LMP, to-
tal demand, true total avoidable costs, reported total avoidable costs,
and the GenCo Lerner index during day 1000 for the benchmark dy-
namic 5-bus test case extended to include GenCo learning and demand
varying from R=0.0 (100% fixed) to R=1.0 (100% price sensitive).

R Avg LMP Avg Total Demand Avg TrueTVCost Avg RepTVCost Avg LI

0.0 140.30 318.21 4,154.01 16,045.20 0.6347
(106.03) (0.00) (3,751.36) (23,126.74) (0.25)

0.1 128.32 286.39 3,519.94 12,492.44 0.6092
(94.79) (0.00) (3,163.41) (17,189.76) (0.27)

0.2 58.67 256.23 2,820.88 5,641.99 0.3792
(53.06) (8.81) (3,095.78) (7,797.29) (0.26)

0.3 42.29 227.52 2,313.91 3,895.22 0.3485
(25.55) (15.86) (2,770.51) (4,787.31) (0.23)

0.4 37.54 202.89 1,913.74 3,056.16 0.3231
(20.08) (24.90) (2,503.89) (4,015.67) (0.23)

0.5 32.11 180.25 1,570.93 2,469.80 0.3054
(10.80) (32.85) (2,343.13) (3,740.36) (0.22)

0.6 29.37 164.55 1,389.99 2,133.67 0.2769
(7.69) (42.32) (2,196.00) (3,365.10) (0.21)

0.7 28.13 148.94 1,232.78 1,857.35 0.2654
(7.31) (52.25) (2,012.96) (2,987.34) (0.22)

0.8 26.35 135.30 1,097.52 1,604.06 0.2425
(6.42) (62.95) (1,897.99) (2,700.79) (0.22)

0.9 24.90 120.56 962.60 1,368.97 0.2274
(5.95) (73.11) (1,753.26) (2,399.95) (0.21)

1.0 23.34 106.13 832.18 1,147.94 0.2098
(5.53) (82.63) (1,595.86) (2,099.49) (0.20)

Comparing the no-learning results presented in Table 4.7 to the results with GenCo learning pre-

sented in Table 4.8, it is seen that GenCo learning has strong effects. Mean outcomes for Avg LMP,

Avg Total Demand, Avg TrueTVCost, and Avg LI all monotonically decline with increases in R, as
5In no-learning treatments the GenCos report their true cost and capacity conditions to the ISO each day. Consequently,

the GenCos do not deliberately exercise market power, i.e., they do not engage in either economic or physical withholding
of capacity. Nevertheless, for reasons explained in Tesfatsion, L. (2009a), a binding operating-capacity constraint on a
GenCo G located at a bus k typically causes the LMP at bus k to separate from the marginal cost of G. In standard economic
terminology, the cleared units of capacity-constrained GenCos are strictly inframarginal, meaning they are not the units at
the intersection of demand and supply that determine the market clearing price. This separation results in a non-zero value
for this GenCo’s LI value.
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Figure 4.9 Mean outcomes for average hourly LMPs and LI levels on day 1000
for the benchmark dynamic 5-bus test case extended to include GenCo
learning and demand varying from R=0.0 (100% fixed) to R=1.0
(100% price sensitive).

before. However, as highlighted in Fig. 4.9, mean Avg LMP and mean Avg LI are substantially higher

for each level of R even though mean Avg Total Demand is lower for each positive level of R.

In addition, mean Avg TrueTVCost under learning is higher than its corresponding no-learning

level at R=0.0 and R=0.2 due to out-of-merit order dispatch. However, as R continues to increase, mean

Avg TrueTVCost under learning falls below its corresponding no-learning level due to the relatively

stronger contraction in mean Avg Total Demand. Moreover, under learning, mean Avg RepTVCost is

substantially higher than mean Avg TrueTVCost at each level of R.

The explanation for these effects is that the profit-seeking GenCos quickly learn to implicitly col-

lude on higher-than-true reported marginal costs. This implicit collusion occurs even when demand

bids are fully price sensitive (R=1.0) and the GenCos are forced to compete for limited demand.

Real-world day-ahead markets are meant to operate as double auctions, i.e., as two-sided auc-

tions with actively managed demand bids as well as actively managed supply offers. As elaborated

in Tesfatsion, L. (2009a), Rassenti, S. , Smith, V. L. and Wilson, B. (2003), theoretical, empirical,

and human-subject experimental studies all provide strong support for the general efficiency of the

double-auction market form. A cautionary implication of the findings in this subsection is that the

preponderance of passive fixed demand in real-world day-ahead markets (due largely to a lack of retail

market restructuring) prevents the proper operation of these markets as double auctions. Given essen-

tially vertical demand curves unresponsive to price, the only way that ISOs can hope to control the
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exercise of seller market power is through the imposition of strong mitigation rules that constrain seller

supply-offer behaviors.

4.8 GenCo Price Cap With and Without Learning

Table 4.9 reports mean outcomes for average hourly LMP during day 1000 for the benchmark

dynamic 5-bus test extended to include GenCo learning and a supply-offer price cap (PCap).6 None of

the tested PCap settings is binding on supply offers in the absence of GenCo learning. To see this, note

in Figure 4.2 that the highest true marginal cost for any GenCo over its true capacity operating interval

is only about 35.40 ($/MWh), which is much lower than the lowest tested PCap value 80 ($/MWh).

Consequently, the average hourly LMP outcome 25.18 ($/MWh) with non-learning GenCos provides a

common benchmark of comparison for all of the PCap treatments with learning GenCos.

Table 4.9 Mean outcomes (with standard deviations) for average hourly LMP and
average hourly Inadequacy Event (IE) frequency during day 1000 for
the benchmark dynamic 5-bus test case extended to include GenCo
learning and a supply-offer price cap varying from infinitely high (none)
to low (80), both with and without IE reserve charges.

No PCap PCap=160 PCap=140 PCap=120 PCap=100 PCap=80

Avg LMP (w/o learning) 25.18 25.18 25.18 25.18 25.18 25.18

Avg LMP 140.30 126.31 161.77 153.74 238.99 342.05
with learning and IE (106.03) (193.79) (273.70) (296.70) (381.46) (442.94)

Avg LMP 140.30 89.65 86.95 50.92 48.31 44.91
with learning and w/o IE (106.03) (75.76) (115.17) (33.45) (28.90) (30.54)

Avg IE with learning 0.0% 4.0% 8.2% 7.5% 17.8% 31.1%

Although the tested PCap settings are not binding for non-learning GenCos, they can be binding on

the marginal cost functions reported by learning GenCos. In this study it is assumed that GenCos with

learning capabilities whose reported marginal cost functions are constrained by PCap are not willing to

supply power at reported marginal costs that exceed PCap. Rather, they reduce their reported maximum
6For the subsequent interpretation of these findings, it is important to recall from Chapter 3 Section 3.2.3 that PCap is a

price cap on GenCo-reported supply offers (marginal cost functions) and not on LMPs per se. LMPs are system marginal
costs subject to network effects, not GenCo marginal costs. As discussed more carefully in Tesfatsion, L. (2009a), in the
presence of grid congestion the LMPs at buses without marginal GenCos can strictly exceed the marginal cost of each GenCo.
Consequently, PCap is not necessarily an upper bound on LMPs.
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capacities until their reported marginal costs at their reported maximum capacities are no greater than

PCap.

Consequently, in PCap experiments with learning GenCos, capacity shrinkage can result in a total

offered supply that is below total fixed demand. Careful attention must therefore be paid to the possible

occurrence of inadequacy events (IE), i.e., hours during which GenCo offered supply is less than LSE

fixed demand.

In Table 4.9 two different methods are used to account for IE effects. The first method (“with IE”)

sets a reserve price of 1000 ($/MWh) during any hour in which an IE occurs, and this reserve price is

used as the LMP at each bus for this hour. The second method (“without IE”) simply ignores hours

during which an IE occurs.

The outcomes reported in Table 4.9 show that no IE occurs in the absence of a supply-offer price

cap; offered supply is adequate to meet fixed demand in each hour. However, as PCap is successively

lowered from 160 to 80, the frequency of IE increases from 4% to 31.1%. Ignoring hours in which IE

occurs, it appears that the imposition of a successively lower PCap results in a successively lower mean

Avg LMP value, although this value is still substantially higher than in the no-learning case. However,

when IE hours are taken into account by imposition of the reserve price, results are dramatically differ-

ent; the successive lowering of PCap results in a substantial increase in mean Avg LMP, a reflection of

the substantial increase in IE frequency.

One aspect of the mean Avg LMP outcomes reported in Table 4.9 with GenCo learning and w/o IE

might appear puzzling. Note that mean Avg LMP with no price cap is 140.30 ($/MWh) whereas mean

Avg LMP for PCap=160 ($/MWh) is only 89.65 ($/MWh). This finding indicates that the PCap level

160 is binding on the GenCos’ reported marginal costs even though this PCap level is substantially

higher than the resulting value 89.65 for mean Avg LMP. A similar comment holds for the remaining

four tested PCap levels.

The explanation for this finding is that the distribution of LMPs across the 24 hours of a day

can exhibit substantial fluctuations that are obscured when only average hourly LMP outcomes are

considered. In particular, the maximum LMP value attained during the peak-demand hour on any

given day can be substantially higher than the average hourly LMP attained for this day. Thus, the
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imposition of a price cap can be a binding constraint on GenCo-reported marginal costs during peak-

demand hours even if not in other hours. Since GenCos are only permitted to report one supply offer

per day, a binding constraint on reported marginal costs during peak-demand hours translates into a

binding supply-offer constraint for every hour.

Figure 4.10 Mean outcomes for average hourly LMP levels on day 1000 for the
benchmark dynamic 5-bus test case extended to include GenCo learn-
ing and a supply-offer price cap varying from infinitely high (none)
to low (80). Inadequacy Event (IE) LMP reserve prices are included
in this figure.

Figure 4.10 provides a more disaggregated 24-hour depiction of the mean Avg LMP results reported

in Table 4.9 for GenCo learning with IE reserve prices taken into account. It is now seen more clearly

that IE largely occurs around the peak-demand hour 17, and that IE tends to occur in these hours with

higher frequency for lower PCap settings.

Figure 4.11 presents still another way to visualize the mean Avg LMP outcomes reported in Ta-

ble 4.9 for GenCo learning with IE reserve prices taken into account. This figure shows that the impo-

sition of a successively lower PCap tends to induce a dramatic increase in LMP spiking and volatility

range relative to the no-PCap treatment. As explained more carefully in Chapter 3 Section 3.1.4, “spik-

ing” refers to the absolute difference between successive hourly LMPs across all 24 hours of the final

(1000th) simulated day, whereas “volatility range” refers to the difference between maximum and min-

imum LMP across all 24 hours of this final simulated day.

The cautionary bottom line here is that supply-offer price caps can have unintended consequences
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Figure 4.11 Mean outcomes for LMP spiking and LMP volatility range on day
1000 for the benchmark dynamic 5-bus test case extended to include
GenCo learning and a supply-offer price cap varying from infinitely
high (none) to low (80). Inadequacy Event (IE) LMP reserve prices
are included in this figure.

that outweigh intended benefits. Improperly imposed caps can lead to increased LMP spiking and

volatility as well as increased system security issues through inducement of IE, particularly around

peak-demand hours, even if LMP values are indeed lowered during other hours.

4.9 LMP Spatial Cross-Correlations

4.9.1 Correlation Experiment Preliminaries

This subsection examines the extent to which these hourly bus LMPs are cross-correlated with

GenCo reported marginal costs and with each other. Of particular interest is the extent to which cross-

correlations are induced in hourly bus LMPs either by the marginal status of strategically located and

sized GenCos or by network effects.

Three types of experimental findings are reported below: (a) pairwise cross-correlations between

reported GenCo marginal costs evaluated at dispatch operating points; (b) pairwise cross-correlations

between GenCo reported marginal costs and bus LMPs evaluated at dispatch operating points; and (c)

pairwise cross-correlations between bus LMPs evaluated at dispatch operating points. In each case the

cross-correlations are calculated at the following four representative hours from the LSE load profiles
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depicted in Figure 4.3:

• the off-peak hour 4:00

• the shoulder hour 11:00

• the peak-demand hour 17:00

• the shoulder hour 20:00

Moreover, for each of these four hours the three types of cross-correlations are calculated for three

different demand scenarios as characterized by three different settings for R. In total, then, thirty-six

distinct cross-correlation treatments (3× 4× 3) are reported below.

Illustrative findings from these treatments are depicted using correlation diagrams as well as tables.

Each correlation diagram uses shape, shape direction, and color to convey information about the sign

and strength of the resulting pairwise cross-correlations.

The shapes and shape directions in the correlation diagrams are rough indicators of the patterns

observed in the underlying scatter plots for the two random variables whose cross-correlation is under

examination. Color is used to reinforce shape and shape direction information.

More precisely, if a scatter plot for two random variables X and Y roughly lies along a straight

line, this suggests that X and Y are perfectly correlated. If the line is positively sloped, the indication

is perfect positive correlation (1.0); if the line is negatively sloped, the indication is perfect negative

correlation (-1.0). The correlation diagrams indicate these possible patterns by means of straight lines

that are either forward or backward slanted to indicate positive or negative correlation respectively.

Conversely, if the scatter plot for X and Y instead consists of a roughly rectangular cloud of points,

this indicates that X and Y are independent of each other, implying zero correlation. The correlation

diagrams indicate this pattern by means of full circles. Intermediate to this are scatter plots for X and

Y that are roughly elliptical in shape, indicating moderate but not perfect correlation between X and

Y. The correlation diagrams indicate this pattern by means of oval shapes that point to the right for

positive correlation values and to the left for negative correlation values.

Red-colored shapes indicate positive correlation and blue-colored shapes indicate negative corre-

lation. The intensity of the red (blue) color indicates the degree of the positive (negative) correla-
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tion. Specifically, the darkest red color corresponds to a positive correlation value between 1.0 and

0.8, whereas the lightest red color corresponds to a positive correlation value between 0.2 and 0.0.

Conversely, the darkest blue color corresponds to a negative correlation value between -1.0 and -0.8,

whereas the lightest blue color corresponds to a negative correlation value between -0.2 and 0.0.

4.9.2 GenCo Cross-Correlations

Table 4.10 presents pairwise cross-correlations for GenCo reported marginal costs for the bench-

mark dynamic 5-bus test case extended to include GenCo learning. The indicated cross-correlations are

calculated at the GenCos’ dispatch points for the peak-demand hour 17 on the final (1000th) simulated

day for 30 different runs.

These GenCo cross-correlations are fairly weak, an indication that the GenCos are not responding

in a direct strategic manner to the supply-offer choices of other GenCos. Indeed, the VRE learning

algorithm used by the GenCos to determine their daily supply offer choices only takes into account

each GenCo’s own past net earnings as determined by its own past dispatch and LMP levels. The

presence of rival GenCos is not considered.

As will next be shown, stronger patterns are obtained for GenCo-LMP and LMP-LMP cross-

correlations.

Table 4.10 Pairwise cross-correlations between GenCo reported marginal costs
at the peak-demand hour 17 of day 1000 for the benchmark dynamic
5-bus test case extended to include GenCo learning.

GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5
GenCo 1 1.0000 0.1254 -0.3412 -0.0588 0.2879
GenCo 2 1.0000 -0.0355 0.1131 0.5042
GenCo 3 1.0000 -0.3518 0.0163
GenCo 4 1.0000 -0.1718
GenCo 5 1.0000

4.9.3 GenCo-LMP Cross Correlations

Table 4.11 presents pairwise cross-correlations between GenCo reported marginal costs and bus

LMPs for the peak-demand hour 17 of day 1000 under the same experimental conditions as in subsec-

tion 4.9.2. These cross-correlations indicate a moderately-positive correlation between GenCo 3 and
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the LMPs at buses 2-4, a negative correlation between GenCo 4 and the LMPs at buses 1 and 5, and a

strong positive correlation between GenCo 5 and the LMPs at buses 1 and 5. Note, also, that the final

column of values in Table 4.11 is identical to the final column of values in Table 4.10. What explains

these correlation patterns?

Table 4.11 Pairwise cross-correlations between GenCo reported marginal costs
and bus LMPs at the peak-demand hour 17 of day 1000 for the bench-
mark dynamic 5-bus test case extended to include GenCo learning.

LMP 1 LMP 2 LMP 3 LMP 4 LMP 5
GenCo 1 0.3136 -0.2244 -0.2143 -0.0718 0.2879
GenCo 2 0.4150 0.1344 0.1591 0.4148 0.5042
GenCo 3 -0.1164 0.5147 0.5222 0.5363 0.0163
GenCo 4 -0.2711 0.4641 0.4625 0.3811 -0.1718
GenCo 5 0.9704 -0.3125 -0.2712 0.2293 1.0000

One important explanatory factor is branch congestion and direction of branch power flows during

hour 17. Recall from subsection 4.5 that the branch 1-2 connecting bus 1 and bus 2 is typically con-

gested in every hour under learning; an example of this is seen in Table 4.5. Consequently, buses 2-4

constitute a load-pocket for GenCo 3 located at bus 3. It is therefore not surprising that GenCo 3’s

reported marginal costs are positively correlated with the LMPs at these load-pocket buses during the

peak-demand hour 17.

In addition, the persistent congestion on branch 1-2 results in a negative correlation between the

reported marginal cost for GenCo 4 at bus 4 and the LMPs at buses 1 and 5 during the peak-demand

hour 17. This happens because the power injected by GenCo 4 during hour 17 substitutes in part for

the cheaper power of the marginal GenCos 1 and 5 in servicing load at the load-pocket buses 2-4. This

substitution occurs because GenCos 1 and 5 are located at buses 1 and 5 and hence are semi-islanded

behind the congested branch 1-2 during hour 17 as dictated by the directions of branch power flows;

cf. Table 4.6.

A second important explanatory factor is limits on generation operating capacities during hour 17,

which affect the marginal status of the different GenCos. As previously noted in subsection 4.5, the

LMP at each bus with a marginal GenCo is given by the reported marginal cost of this GenCo, whereas

the LMP at each bus without a marginal GenCo is given by a weighted linear combination of the

reported marginal costs of the marginal GenCos.
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Table 4.12 reports the frequency (across thirty runs) of each GenCo’s marginality during four dif-

ferent hours on day 1000, including the peak-demand hour 17. As indicated, GenCo 5 located at bus

5 is persistently marginal during hour 17, hence the LMP at bus 5 persistently coincides with GenCo

5’s reported marginal cost. This explains the finding in Table 4.11 of a perfect positive correlation of

1.0 between GenCo 5’s reported marginal cost and the LMP at bus 5 during hour 17, as well as the

appearance of identical final columns of values in Tables 4.10 and 4.11.

Table 4.12 also indicates that no other GenCo is persistently marginal during hour 17. For example,

GenCo 3 is dispatched at maximum operating capacity in 13% of the runs due either to a relatively low

reported marginal cost by GenCo 3 or a relatively high reported marginal cost by GenCo 4. This non-

marginality of GenCo 3 restrains the positive correlation between GenCo 3’s reported marginal costs

and the LMPs at the load-pocket buses 2-4 as well as the extent to which power supplied by GenCo 3

can substitute for the power of GenCos 1 and 5 during hour 17.

The correlation diagram in Fig. 4.12 for the peak-demand hour 17 provides a visualization of the

GenCo-LMP cross-correlation findings in Table 4.11. In particular, it helps to highlight the importance

of GenCos 3 and 4 for the determination of LMPs at the load-pocket buses 2-4, and the importance of

GenCo 5 for the determination of LMPs at buses 1 and 5.

The remaining correlation diagrams in Fig. 4.12 depict the GenCo-LMP cross-correlations that

arise in the off-peak hour 4:00, the shoulder hour 11:00, and the shoulder hour 20:00. Comparing these

results to the results depicted in Fig. 4.12 for hour 17, note that GenCo 3’s reported marginal cost is

now perfectly positively correlated with the LMP at bus 3 and is strongly positively correlated with

the LMPs at its neighboring buses 2 and 4. These changes arise because the substantially lower fixed

demand in these three non-peak hours results in the persistent marginality of the relatively large GenCo

3; see Table 4.12.

Table 4.12 Frequency of GenCo marginality across 30 runs measured at four dif-
ferent hours on day 1000 for the benchmark dynamic 5-bus test case
extended to include GenCo learning.

GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5
H04 13% 37% 100% 37% 100%
H11 10% 30% 100% 20% 100%
H17 10% 23% 87% 20% 100%
H20 10% 30% 100% 13% 100%
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Figure 4.12 Pairwise cross-correlations between GenCo reported marginal costs
and bus LMPs for hours 04, 11, 17, and 20 during day 1000 for the
benchmark dynamic 5-bus test case extended to include GenCo learn-
ing. Demand for this case is 100% fixed (R=0.0).

Also, in contrast to the peak-demand hour 17, GenCo 4’s reported marginal cost is negatively

correlated with the LMPs at buses 2 and 3 in the three non-peak hours. This occurs because GenCo 4

is in direct rivalry with the marginal GenCo 3 to supply power to buses 2 and 3 during these non-peak

hours. For example, GenCo 4 is dispatched at maximum capacity when its reported marginal cost is

relatively low, which then permits GenCo 3 to service residual demand at buses 2 and 3 at a relatively

high reported marginal cost.

Figures 4.13 and 4.14 report the effects on GenCo-LMP cross-correlations when the R ratio mea-

suring the relative price-sensitivity of demand is systematically increased first to R=0.5 (50% price

sensitivity) and then to R=1.0 (100% price sensitivity). As demand becomes more price sensitive, the

LSEs more strongly contract their demand in response to price increases and branch congestion be-

comes less frequent. This limits the ability of the GenCos to profitably exercise economic withholding,
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Figure 4.13 Pairwise cross-correlations between GenCo reported marginal costs
and bus LMP for hours 04, 11, 17, and 20 during day 1000 for the
benchmark dynamic 5-bus test case extended to include GenCo learn-
ing and 50% potential price-sensitive demand (R=0.5).

Figure 4.14 Pairwise cross-correlations between GenCo reported marginal costs
and bus LMPs for hours 04, 11, 17, and 20 during day 1000 for the
benchmark dynamic 5-bus test case extended to include GenCo learn-
ing and 100% price-sensitive demand (R=1.0).
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which in turn results in dramatically lower reported marginal costs.

In particular, as R increases, the GenCos with relatively low true marginal costs are advantaged and

those with relatively high true marginal costs lose out. This can be seen by comparing the correlation

diagrams in Figures 4.12 through 4.14. As R increases from R=0.0 to R=1.0, the relatively cheap

GenCo 5 gains increased influence over each bus LMP while the relatively expensive GenCo 3 loses

influence over the load-pocket buses 2 through 4.

4.9.4 LMP-LMP Cross Correlations

Table 4.13 reports pairwise cross-correlations for the bus LMPs during the peak-demand hour 17

on day 1000 for the benchmark dynamic 5-bus test case extended to include GenCo learning.

Figure 4.15 Pairwise LMP cross-correlations for hours 04, 11, 17, and 20 during
day 1000 for the benchmark dynamic 5-bus test case extended to in-
clude GenCo learning. Demand for this case is 100% fixed (R=0.0).

Figs. 4.15 through 4.17 depict the changes induced in these cross-correlations when the price-

sensitivity of demand is systematically increased from R=0.0 (100% fixed) to R=1.0 (100% price sen-
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Figure 4.16 Pairwise LMP cross-correlations for hours 04, 11, 17, and 20 dur-
ing day 1000 for the benchmark dynamic 5-bus test case extended
to include GenCo learning and 50% potential price-sensitive demand
(R=0.5).

Figure 4.17 Pairwise LMP cross-correlations for hours 04, 11, 17, and 20 dur-
ing day 1000 for the benchmark dynamic 5-bus test case extended to
include GenCo learning and 100% price-sensitive demand (R=1.0).
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sitive).

Table 4.13 Pairwise cross-correlations between bus LMPs at the peak-demand
hour 17 of day 1000 for the benchmark dynamic 5-bus test case ex-
tended to include GenCo learning.

LMP 1 LMP 2 LMP 3 LMP 4 LMP 5
LMP 1 1.0000 -0.5328 -0.4957 -0.0127 0.9704
LMP 2 1.0000 0.9991 0.8530 -0.3125
LMP 3 1.0000 0.8747 -0.2712
LMP 4 1.0000 0.2293
LMP 5 1.0000

The most dominant regularity seen in these LMP correlation results is that the bus LMP cross-

correlations become increasingly positive as R increases. This is particularly true for the non-peak

hours 04, 11, and 20 with relatively lower LSE fixed demands.

As R increases, a larger portion of LSE total demand is price sensitive. Consequently, the LSEs are

able to exercise more resistance to higher prices through demand contraction, which in turn reduces

branch congestion. In the current context, bus LMPs are derived from DC OPF solutions with zero

losses assumed.7 Consequently, as congestion diminishes, the LMPs exhibit less separation. In the

limit, if all congestion were to disappear, the LMPs would converge to a single uniform price across

the grid, which in turn would imply perfect positive correlation among all bus LMPs.

For the non-peak hours 04, 11, and 20, the typical result for the limiting case R=1.0 is no branch

congestion. Hence, the bus LMPs during these hours—particularly hour 04—are close to being per-

fectly positively correlated when R=1.0. For the peak-demand hour 17, however, the branch 1-2 is

typically congested even for R=1.0. Consequently, LMP cross-correlations for hour 17 exhibit a strong

but not perfect positive correlation.

Another regularity seen in Table 4.13 and Figs. 4.15-4.17 is that the LMP at bus 2 is always strongly

positively correlated with the LMP at bus 3. At high R levels, this reflects a lack of branch congestion

and hence a lack of LMP separation. At low R levels, however, the branch 1-2 tends to be congested

at all hours; cf. Table 4.6. The congestion on branch 1-2 means that the bulk of the demand at the

load-only bus 2 must be supplied along branch 3-2 by the large and frequently marginal GenCo 3. This

in turn means that the LMP at bus 2 is most strongly influenced by the LMP at bus 3.
7See Liu, H. et al. (2009) for a rigorous presentation of this LMP derivation.
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4.9.5 Empirical Evidence on LMP Correlations

In this subsection to calculate LMP cross-correlations using real-world price data. In particular,

focus on LMP determination in a neighborhood of the MidAmerican Energy Company (MEC), the

largest utility in Iowa.

Through April 2009, MEC was treated as a Balancing Authority (BA) in MISO.8 A BA is re-

sponsible for maintaining load-interchange-generation balance and the support of the Interconnection

frequency.

From the geographical map depicted in Fig. 4.18, four neighboring BAs of MEC were picked in

order to study MEC’s effect on their LMPs. These BAs are Alliant Energy Corporate Services, Inc.

(ALTW), Muscatine Power and Water (MPW), Omaha Public Power District (OPPD), and Nebraska

Public Power District (NPPD). 24-hour historical data were obtained from MISO for the real-time and

day-ahead LMPs determined for these BAs on August 1, 2, 3 and September 1 in 2008; see Li, H. and

Tesfatsion, L. (2009e). In particular, for ALTW the LMP for the load zone ALTW.MECB was used

, and for the remaining four BAs interface LMPs were used. Then these data were used to calculate

pairwise cross-correlations between the LMP reported for MEC and the LMPs reported at its four

neighboring BAs.

Table 4.14 Pairwise cross-correlations between real-time and day-ahead market
LMPs for the MidAmerican Energy Corporation (MEC) and four
neighboring balancing authorities.

DA (8/1/08) DA (8/2/08) DA (8/3/08) DA (9/1/08) RT (8/1/08) RT (8/2/08) RT (8/3/08) RT (9/1/08)
MEC–ALTW 0.998 0.997 0.999 1.000 0.994 0.971 0.974 1.000
MEC–MPW 0.996 0.994 0.998 1.000 0.996 0.970 0.973 1.000
MEC–OPPD 1.000 1.000 0.999 1.000 0.996 0.986 0.973 1.000
MEC–NPPD 0.998 0.998 0.995 0.998 0.983 0.930 0.824 1.000

Table 4.14 reports our LMP cross-correlation findings. All of the LMP cross-correlations are

strongly positive. Since MEC is large, and presumably marginal, this suggests that the supply behavior

of the MEC could be spilling over to affect the LMPs at neighboring BAs.

On the other hand, as always, care must be taken to recognize potentially confounding effects in

real-world data. As noted above, the LMPs reported by MISO for MEC and its four neighboring BAs
8On May 1, 2009, MEC filed an application with the Iowa Utilities Board to become a transmission-owning member of

MISO.
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are load-weighted prices determined for a load zone and interfaces and not for a single bus. The strong

positive LMP cross-correlations in Table 4.14 could be a statistical artifact arising from the particular

load-weighting method employed. Alternatively, they could indicate a lack of branch congestion during

the selected days arising either through happenstance or through deliberate ISO planning.

To differentiate between these various potential explanations for the strong positive correlations in

Table 4.14—GenCo spillover effects, statistical artifact, and lack of congestion—need to obtain data

on MEC supply offers and branch congestion at an hourly level for the selected test days, as well as

data giving individuated bus LMPs. To our knowledge, these data are not currently publicly available.

Although agent-based test beds such as AMES can be used to develop interesting hypotheses using

simulated scenarios, the real payoff to such development will only come when these hypotheses can be

tested more fully against real-world data.

Figure 4.18 MidAmerican Energy Company (MEC) Balancing Authority and
four neighboring Balancing Authorities in relation to MISO.
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CHAPTER 5. ISO NET SURPLUS STUDY

This chapter uses dynamic 5-bus and 30-bus test cases to explore the social efficiency implica-

tions of the net surplus (congestion rents) collected and redistributed by ISOs in restructured wholesale

power markets with grid congestion managed by locational marginal pricing (LMP). Demand price

sensitivity and generator learning capabilities are taken as treatment factors. A key finding is that ISO

net surplus substantially increases as the price-sensitivity of demand is reduced and the learning capa-

bilities of generators are increased, conditions resulting in greater economic capacity withholding and a

possible wastage of resources. A practical implication is that a more transparent public oversight of all

net surplus collections and uses in wholesale power markets operating under LMP would be publicly

prudent because these collections are not structurally well-aligned with social efficiency objectives.

5.1 Introduction

As elaborated in Joskow, P. (2006), over 50% of electric power generation in the U.S. is now traded

at wholesale using locational marginal prices (LMPs). More precisely, an LMP at a particular grid

location is the least cost to the system of providing an additional increment of power at that location.

Congestion arising on any grid branch necessarily results in separation between the LMPS at two or

more pricing locations. Ideally, as explained in Hausman, E. et al. (2006), this LMP separation should

encourage transmission enhancements that relieve grid congestion, encourage new generation to locate

where it has the greatest value, and encourage load to locate where it can be serviced most cheaply.

As is well-known, however, given branch and generation capacity limits, the physical laws regulat-

ing the flow of power on non-radial transmission grids can result in counter-intuitive LMP separation

outcomes, see Gross, G. and Bompard, E. (2004), and Kirschen, D. S. and Strbac, G. (2004) Chp. 6.

For example, LMPs at the two ends of a branch can separate without the branch being congested, power
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can flow from higher to lower price locations, and the price at a load-only location can be strictly higher

or strictly lower than the marginal cost of all marginal (non-capacity-constrained) generation.

Another important LMP separation outcome is the creation of a net earnings stream whose use

is discretionary to the independent system operator (ISO). When LMPs separate across the grid, the

prices paid by load-serving entities (LSEs) can diverge from the prices paid to generation companies

(GenCos). The difference between total LSE payments and total GenCo receipts, referred to below as

ISO net surplus,is collected and redistributed by the ISO.

Previous research has shown that ISO net surplus is necessarily non-negative under standard DC

OPF formulations; see Aldete, G. B. (2005) Prop. 2.1. Simulation findings in Gross, G. and Bompard,

E. (2004) Fig. 11 demonstrate the strong sensitivity of ISO net surplus to variations in line flow limit

specifications. To date, however, the social efficiency implications of ISO net surplus collections and

uses do not appear to have been systematically examined.

Standard market efficiency analysis, entailing the maximization of the total net surplus extracted in

a single market, is increasingly being applied to the study of power markets e.g., Liu, H. et al. (2008),

Walawalkar, R. et al. (2008). However, this standard analysis focuses on seller and buyer net surplus

collections. It does not consider the possibility that an agency tasked with clearing the market, here the

ISO, is able to extract net surplus along with sellers and buyers, a feature that appears to raise conflict

of interest issues. Moreover, it does not consider the more comprehensive issue of social efficiency.

This chapter uses the AMES Wholesale Power Market Test Bed to investigate ISO net surplus

collections in relation to social efficiency for dynamic 5-bus and 30-bus test cases under systematically

varied settings for demand-bid price sensitivity and the learning capabilities of GenCos.

5.2 Experimental Design

The benchmark dynamic 5-bus test case is detailed in Chapter 4 Section 4.3.

The benchmark dynamic 30-bus test case used in this study is a modified version of the IEEE 30-

bus system presented in Shahidehpour, M. , Yamin, H. and Li, Z. (2002) App. D.4, 477-478. This

30-bus system has 9 GenCos, 21 LSEs, and 41 transmission grid branches. A complete input data file

for this 30-bus system is included as Appendix C.
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Two learning treatments are investigated in the experiments reported below: (a) As in the bench-

mark case, GenCos are non-learners; and (b) each GenCo i is a learning entity that makes daily use of

a stochastic reinforcement learning algorithm to adjust the ordinate and slope parameters {aRi , bRi } of

its reported marginal cost functions (3.6) in pursuit of increased net earnings.

To control for random effects when GenCos are learners, thirty pseudo-random number seed values

are used to initialize thirty distinct runs, each 1000 (5-bus) or 500 (30-bus) simulated days in length.

See Table B.2 for a listing of these seed values.

To investigate LSE demand-bid price sensitivity, the ratio R of maximum potential price-sensitive

demand to maximum potential total demand is systematically varied in each hour H, starting from

R=0.0 (100% fixed demand) and ending with R=1.0 (100% price-sensitive demand). A positive R

value indicates that the LSEs are able to exercise at least some degree of price resistance. Figure 3.6

illustrates the construction of R for the special cases R=0.0, R=0.5, and R=1.0.

5.3 5-Bus Benchmark Case

During a typical day D for the benchmark dynamic 5-bus test case the branch 1-2 connecting bus

1 to bus 2 is persistently congested. As a result, in each hour there is complete LMP separation across

the grid.

As depicted in Table 5.1, GenCos 1 and 2 have relatively small net earnings in all hours and par-

ticularly in the peak-demand hour 17. This occurs for two reasons. First, as depicted in Fig. 4.1, these

two GenCos are located at bus 1, hence they are semi-islanded away from the “load pocket” at buses 2

through 4 due to the persistent congestion on branch 1-2. Second, as seen in Fig. 4.2, these two GenCos

have relatively small operating capacities.

In contrast, GenCo 3 located at the load-pocket bus 3 has relatively large net earnings in every hour,

particularly in the peak-demand hour 17. This occurs because GenCo 3 is a pivotal supplier in most

hours, meaning its relatively large capacity is needed to meet fixed demand. Moreover, during hour 17,

GenCo 3 is dispatched at its maximum capacity and GenCo 5 is semi-islanded from bus 3 due to the

congestion on branch 1-2. Consequently, to meet demand at bus 3 during hour 17, the ISO needs to

call upon the expensive peaker unit, GenCo 4. This substantially spikes the LMP at bus 3 in hour 17,



www.manaraa.com

86

Table 5.1 Hourly GenCo net earnings during a typical 24-hour day D for the
benchmark dynamic 5-bus test case.

Hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5
00 67.81 1.15 1,105.79 0.00 1,377.42
01 67.24 1.08 725.83 0.00 1,340.07
02 66.87 1.04 518.48 0.00 1,315.68
03 66.68 1.02 427.08 0.00 1,303.45
04 66.49 0.99 345.93 0.00 1,291.50
05 66.59 1.01 385.44 0.00 1,297.48
06 66.68 1.02 427.08 0.00 1,303.45
07 67.06 1.06 618.74 0.00 1,327.95
08 68.00 1.18 1,247.51 0.00 1,389.76
09 68.75 1.28 1,909.70 0.00 1,440.36
10 68.94 1.30 2,097.94 0.00 1,453.20
11 69.03 1.31 2,193.68 0.00 1,459.54
12 68.94 1.30 2,097.94 0.00 1,453.20
13 68.75 1.28 1,909.70 0.00 1,440.36
14 68.66 1.26 1,820.44 0.00 1,434.06
15 68.66 1.26 1,820.44 0.00 1,434.06
16 69.03 1.31 2,193.68 0.00 1,459.54
17 0.02 0.00 18,654.46 142.27 1,912.03
18 57.62 0.22 4,980.40 0.00 1,573.60
19 69.41 1.37 2,601.82 0.00 1,485.24
20 69.31 1.35 2,497.56 0.00 1,478.84
21 69.13 1.33 2,291.68 0.00 1,465.89
22 68.66 1.26 1,820.44 0.00 1,434.06
23 68.09 1.19 1,324.32 0.00 1,396.18

Total 1,556.41 26.58 56,016.09 142.27 34,266.94

and hence the net earnings of GenCo 3.

GenCo 5 is essentially a base-load generator with large capacity and low marginal cost that is never

dispatched at its maximum capacity. Consequently, although it is a pivotal supplier in most hours, its

net earnings remain relatively flat.

Fig. 5.1 presents benchmark-case hourly financial flows during a typical day D. Note that LSE

payments are persistently higher than GenCo revenues, particularly during the peak-demand hour 17.

Consequently, ISO net surplus is persistently positive with a spike during hour 17.

Indeed, as will be seen below in Table 5.2, for a typical day D for the benchmark case (R=0.0),

LSE payments are $754,919.61 and GenCo revenues are $545,508.54. Consequently, ISO net surplus

is $209,411.07, which is about 2.3 times the amount $92,008.30 of GenCo net earnings.

5.4 5-Bus Case with Learning and Price-Sensitive Demand

For each R treatment, both with and without GenCo learning, congestion persistently occurs on

branch 1-2. As seen in Fig. 4.9, however, the extension of the benchmark 5-bus test case to include
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Figure 5.1 LSE payments, GenCo revenues, ISO net surplus, and GenCo net earn-
ings during a typical 24-hour day D for the benchmark 5-bus test case.

GenCo learning and price-sensitive demand results in a substantial increase in mean LMP outcomes,

particularly for small values of R. As more carefully explained in Li, H. , Sun, J. and Tesfatsion,

L. (2009), this substantial LMP increase arises because each GenCo i learns over time to exercise

economic capacity withholding, i.e., to submit to the ISO reported marginal cost functions (3.6) that lie

strictly above its true marginal cost function (3.8).

This economic capacity withholding by the learning GenCos also has dramatic effects on ISO net

surplus collection. These dramatic effects are graphically depicted in Figs. 5.2 and 5.3 and numerically

reported in Tables 5.2 and 5.3.

Specifically, Fig. 5.2 and Table 5.2 present financial flows on a typical day D for the benchmark

dynamic 5-bus test case extended to permit demand to vary from R=0.0 (100% fixed) to R=1.0 (100%

price sensitive). As in the benchmark case, the GenCos submit supply offers to the ISO that reflect their

true cost and capacity attributes. In contrast, Fig. 5.3 and Table 5.3 present corresponding financial

flows on day 1000 for the case in which all five GenCos have learning capabilities. In particular, each

GenCo applies stochastic reinforcement learning to its past net earnings outcomes in an attempt to

determine which supply offer it should report to achieve the highest daily net earnings.

Consider, for example, the R=0.0 (100% fixed demand) daily data presented for the benchmark

no-learning case in Fig. 5.2 and Table 5.2 and for the learning case in Fig. 5.3 and Table 5.3. Mean

LSE payments on day 1000 for the learning case are $5,040,530.89, an approximately 6.7-fold increase
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Figure 5.2 LSE payments, GenCo revenues, ISO net surplus, and GenCo net earn-
ings during a typical day D for the benchmark dynamic 5-bus test case
extended to permit demand to vary from R=0.0 (100% fixed) to R=1.0
(100% price sensitive)

Figure 5.3 Mean outcomes for LSE payments, GenCo revenues, ISO net surplus,
and GenCo net earnings during day 1000 for the benchmark dynamic
5-bus test case extended to include GenCo learning and demand vary-
ing from R=0.0 (100% fixed) to R=1.0 (100% price sensitive)
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Table 5.2 GenCo net earnings, GenCo revenues, LSE payments, and ISO net sur-
plus on a typical day D for the benchmark dynamic 5-bus test case ex-
tended to permit demand to vary from R=0.0 (100% fixed) to R=1.0
(100% price sensitive).

R=0.0 R=0.2 R=0.4 R=0.6 R=0.8 R=1.0

GenCo 1 DNE 1,556.41 1,412.41 1,316.90 1,239.14 1,193.74 1,145.06

GenCo 2 DNE 26.58 10.93 4.30 1.42 1.21 0.43

GenCo 3 DNE 56,016.09 35,651.85 21,354.23 11,479.86 2,874.96 2,493.13

GenCo 4 DNE 142.27 13.91 0.00 0.00 0.00 0.00

GenCo 5 DNE 34,266.94 32,253.34 30,460.22 28,531.08 26,246.37 23,364.36

Total GenCo DNE 92,008.30 69,342.45 53,135.65 41,251.49 30,316.28 27,002.99

GenCo 1 DRev 38,356.90 38,599.53 37,574.43 36,411.03 35,826.48 34,932.06

GenCo 2 DRev 4,801.54 3,082.31 1,912.43 990.22 617.12 303.06

GenCo 3 DRev 321,967.71 229,151.51 144,201.72 74,559.64 24,303.90 17,528.99

GenCo 4 DRev 3,551.07 1,049.37 0.00 0.00 0.00 0.00

GenCo 5 DRev 176,831.32 169,568.69 163,032.42 155,905.91 147,307.23 136,178.18

Total GenCo DRev 545,508.54 441,451.41 346,721.00 267,866.80 208,054.73 188,942.29

Total LSE DPay 754,919.61 625,704.76 506,698.47 399,806.50 301,537.97 231,945.71

ISO DNetSurplus 209,411.07 184,253.35 159,977.47 131,939.70 93,483.24 43,003.42

relative to the benchmark no-learning case. Also, mean GenCo revenues on day 1000 for the learning

case are $2,942,909.93, an approximately 5.4-fold increase relative to the benchmark no-learning case.

Note, however, that mean ISO net surplus on day 1000 for the learning case is then $2,097,620.96,

an almost ten-fold increase relative to the benchmark no-learning case. Indeed, ISO net surplus under

learning is similar in magnitude to GenCo net earnings ($2,441.646.71).

Since total demand for R=0.0 is the same under learning and no learning, the ten-fold increase

in mean ISO net surplus collection under learning implies that the mean LMP paid by the LSEs is

substantially higher than the mean LMP received by the GenCos. As suggested by Fig. 4.9, and more

carefully detailed in Li, H. , Sun, J. and Tesfatsion, L. (2009), this is due to the approximately six-

fold increase under learning in the mean LMP for bus 2, which has the largest load (LSE 1) and no

generation, and to the much smaller increases under learning in the mean LMPs for buses 1 and 5,

which have generation but no load.

Another regularity observed in Figs. 5.2 and 5.3, as well as in Tables 5.2 and 5.3, is that GenCo

net earnings, GenCo revenues, LSE payments, and ISO net surplus all undergo marked monotonic
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Table 5.3 Mean outcomes (with standard deviations) for GenCo net earnings,
GenCo revenues, LSE payments, and ISO net surplus on day 1000
for the benchmark dynamic 5-bus test case extended to include GenCo
learning and demand varying from R=0.0 (100% fixed) to R=1.0 (100%
price sensitive).

R=0.0 R=0.2 R=0.4 R=0.6 R=0.8 R=1.0

GenCo 1 DNE 69,219.61 21,950.82 18,028.37 15,317.64 11,460.38 6,075.72
(64,055.42) (32,888.20) (20,401.49) (17,342.48) (13,341.31) (8,585.60)

GenCo 2 DNE 54,548.72 18,919.31 13,271.49 11,141.69 8,368.95 5,061.87
(57,868.92) (30,102.78) (19,648.72) (15,916.37) (13,528.49) (9,487.15)

GenCo 3 DNE 1,725,216.72 293,743.16 41,122.50 8,213.84 4,059.61 2,316.01
(389,906.14) (269,901.79) (20,776.25) (7,847.69) (3,343.84) (1,775.20)

GenCo 4 DNE 321,907.08 38,678.95 5,589.68 66.32 14.11 3.38
(153,782.17) (73,333.88) (14,969.93) (161.70) (51.51) (18.22)

GenCo 5 DNE 270,754.58 167,938.19 149,920.04 118,535.14 83,774.92 54,920.77
(124,835.20) (113,128.59) (85,701.22) (50,853.37) (32,392.38) (20,700.86)

Total GenCo DNE 2,441,646.71 541,230.41 227,932.07 153,274.62 107,677.99 68,377.76
(153,782.17) (73,333.88) (14,969.93) (161.70) (51.51) (18.22)

GenCo 1 DRev 93,976.61 39,069.66 34,172.46 30,876.22 25,992.32 16,407.69
(78,884.69) (46,553.23) (35,411.75) (31,825.48) (27,100.83) (20,871.22)

GenCo 2 DRev 74,751.32 32,167.61 25,385.25 22,521.81 18,284.43 12,934.50
(72,682.55) (44,047.41) (34,607.65) (30,244.82) (27,425.88) (22,709.95)

GenCo 3 DRev 1,952,910.84 432,137.00 97,834.40 27,830.78 13,671.15 7,337.80
(386,964.13) (257,39.64) (37,540.80) (27,309.84) (14,680.47) (6,473.61)

GenCo 4 DRev 449,051.68 70,968.73 14,705.64 296.48 77.98 16.88
(195,313.53) (122,983.56) (36,263.17) (575.30) (231.84) (90.88)

GenCo 5 DRev 372,219.49 305,520.62 285,483.62 238,548.54 181,354.58 131,542.33
(102,726.38) (106,382.80) (79,412.59) (44,763.65) (47,182.98) (46,882.23)

Total GenCo DRev 2,942,909.93 879,863.63 457,581.36 320,073.84 239,380.46 168,239.20
(558,938.79) (385,241.09) (113,573.45) (52,131.79) (24,347.08) (25,679.71)

Total LSE DPay 5,040,530.89 1,526,994.60 663,801.01 377,524.06 271,061.40 183,118.99
(1,043,543.03) (975,375.28) (209,686.70) (11,366.32) (26,241.77) (33,324.23)

ISO DNetSurplus 2,097,620.96 647,130.97 206,219.65 57,450.22 31,680.94 14,879.79
(632,303.71) (633,129.12) (197,896.93) (48,696.64) (30,789.07) (11,016.23)
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declines as R increases from R=0.0 (100% fixed demand) to R=1.0 (100% price-sensitive demand).

The explanation for these monotonic declines is as follows.

Consider, first, the benchmark no-learning case. Given low R values, the LSEs have very little price

resistance; they are willing to pay any price to satisfy their fixed demands, and their fixed demands

constitute the bulk of their total demands. Around the peak-demand hour 17, due in part to congestion

on branch 1-2, the ISO must dispatch the most expensive GenCos 3, 4, and 5 to meet the large LSE

fixed demand, i.e., these GenCos are pivotal suppliers for hour 17.

This results in relatively high LMPs. As R increases, however, the LSEs are increasingly able to

resist high prices through demand withholding. As carefully reported in Li, H. , Sun, J. and Tesfatsion,

L. (2009), this results in lower LMPs, lower total demand, and lower avoidable costs of production.

GenCo revenues and LSE payments are thus lower, and GenCo net earnings are also lower because the

decline in GenCo avoidable costs is more than offset by the decline in GenCo revenues. Similarly, ISO

net surplus is lower because the decline in GenCo revenues is more than offset by the decline in LSE

payments.

Next consider the day-1000 data for the learning case. For R=0.0 the mean outcomes for LSE pay-

ments, GenCo revenues, and ISO daily net surplus under learning are all substantially higher than their

corresponding values under no learning. As R increases, however, the mean outcomes for LSE pay-

ments, GenCo revenues, and ISO net surplus under learning eventually drop below their corresponding

values under no learning. For mean GenCo revenues the switch point is at R=1.0, whereas for mean

LSE payments and mean ISO net surplus the switch point is at R=0.6.

The explanation for these switch points can be deduced from the detailed LMP and total demand

findings for the no-learning and learning cases presented in Li, H. , Sun, J. and Tesfatsion, L. (2009).

When GenCos are learners, low R values (implying large fixed demands) provide pivotal suppliers with

a substantial opportunity to engage in profitable economic withholding. This dramatically increases

LMPs relative to the no-learning case, particularly at the load-only bus 2. Since total demand for the

learning case is only modestly lower than for the no-learning case for low R values, the end result is

substantially higher LSE payments, GenCo revenues, and ISO net surplus.

On the other hand, as R increases and the LSEs acquire an increasing ability to resist high prices
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through demand withdrawal, the learning GenCos are increasingly forced to compete with each other

for dispatch by lowering their reported marginal costs. This competitive process results in lower LMPs.

However, the LMPs resulting under learning remain higher than under no learning for all R values,

which in turn induces the LSEs to engage in greater demand withholding under learning.

The end result is that mean LSE payments, mean GenCo revenues, and mean ISO net surplus under

learning all fall below their corresponding no-learning values as R approaches 1.0 due to the relatively

strong contraction in total demand under learning. As can be verified from the GenCo net earnings data

provided in Table 5.3, the most expensive GenCo 4 is at the greatest disadvantage in this competitive

process while the least expensive GenCo 5 is most advantaged.

5.5 30-Bus Benchmark Case

Figure 5.4 LSE payments, GenCo revenues, ISO net surplus, and GenCo net earn-
ings during a typical 24-hour day D for the benchmark dynamic 30-bus
test case.

Fig. 5.4 presents benchmark-case hourly financial flows during a typical day D for 30-bus test

case. Note that LSE payments are persistently higher than GenCo revenues, particularly during the

peak-demand hour 17. Consequently, ISO net surplus is persistently positive with a spike during hour

17.

Table 5.4 shows hourly GenCo net earnings during a typical 24-hour day D for the benchmark

dynamic 30-bus test case.
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Table 5.4 Hourly GenCo net earnings during a typical 24-hour day D for the
benchmark dynamic 30-bus test case.

Hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5 GenCo 6 GenCo 7 GenCo 8 GenCo 9

00 16.56 3.27 240.85 248.88 0.00 0.00 10.24 0.00 0.00
01 16.56 2.91 235.56 239.10 0.00 0.00 3.48 0.00 0.00
02 16.56 2.68 232.09 232.69 0.00 0.00 0.99 0.00 0.00
03 16.56 2.57 230.31 229.40 0.00 0.00 0.30 0.00 0.00
04 16.56 2.46 228.59 226.23 0.00 0.00 0.01 0.00 0.00
05 16.56 2.51 229.46 227.84 0.00 0.00 0.11 0.00 0.00
06 16.56 2.57 230.31 229.40 0.00 0.00 0.30 0.00 0.00
07 16.56 2.79 233.83 235.91 0.00 0.00 2.05 0.00 0.00
08 16.56 3.39 242.58 252.08 0.00 0.00 13.21 0.00 0.00
09 16.56 3.95 253.41 272.61 0.00 0.16 39.59 0.00 0.00
10 16.56 4.12 255.81 277.07 0.00 0.85 45.74 0.00 0.00
11 16.56 4.21 257.02 279.32 0.00 1.39 48.84 0.00 0.00
12 16.56 4.12 255.81 277.07 0.00 0.85 45.74 0.00 0.00
13 16.56 3.95 253.41 272.61 0.00 0.16 39.59 0.00 0.00
14 16.56 3.86 252.22 270.41 0.00 0.02 36.55 0.00 0.00
15 16.56 3.86 252.22 270.41 0.00 0.02 36.55 0.00 0.00
16 16.56 4.21 257.02 279.32 0.00 1.39 48.84 0.00 0.00
17 16.08 5.89 442.43 647.01 0.00 43.52 5.65 0.00 0.00
18 16.56 4.81 306.29 376.69 0.00 17.66 12.86 0.00 0.00
19 16.56 4.68 298.41 361.16 0.00 12.82 15.20 0.00 0.00
20 16.56 4.56 290.28 345.15 0.00 8.64 17.83 0.00 0.00
21 16.56 4.32 274.04 313.12 0.00 2.74 23.70 0.00 0.00
22 16.56 3.86 252.19 270.35 0.00 0.02 36.48 0.00 0.00
23 16.56 3.46 243.46 253.70 0.00 0.00 14.87 0.00 0.00

Total 396.96 88.99 6247.60 6887.50 0.00 90.26 498.70 0.00 0.00

5.6 30-Bus Case with Learning

Fig. 5.5 presents Comparison of no GenCo learning and with GenCo learning case (day 500) for

mean outcomes for LSE payments, GenCo revenues, ISO net surplus, and GenCo net earnings during

day 500 for 30-bus test case when when demand is 100% fixed demand. Note that with GenCo learning,

every item is much higher than no GenCo learning case.

Due to space limitations, we report only a sampling of results for the 30-bus test case with R=0.0

(100% fixed demand), both with and without GenCo learning.

As seen in Table 5.5, for the no-learning case the typical ISO daily net surplus collection is $28,588,

and for the learning case the mean ISO net surplus collection on day 500 is $53,868.30, nearly double

the amount for the no-learning case. This increase in ISO net surplus under learning is qualitatively

similar to the findings for the 5-bus test case. However, the size of this increase under learning (an
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Figure 5.5 Comparison of no GenCo learning and with GenCo learning case (day
500) for mean outcomes for LSE payments, GenCo revenues, ISO net
surplus, and GenCo net earnings for the benchmark dynamic 30-bus
test case when demand is R=0.0 (100% fixed)

Table 5.5 Mean outcomes (with standard deviations) for GenCo net earnings,
GenCo revenues, LSE payments, and ISO net surplus on day 500 for
the benchmark dynamic 30-bus test with R=0.0 (100% fixed demand),
both with and without GenCo learning.

No GenCo Learning With GenCo Learning

Total GenCo DNE 14,210.01 142,866.39
(67,530.19)

Total GenCo DRev 82,265.01 231,663.41
(68,839.94)

Total LSE DPay 110,853.01 285,531.70
(74,214.33)

ISO DNetSurplus 28,588.00 53,868.30
(32,322.68)

approximate doubling) is not as large as for the 5-bus test case, a reflection of the increased rivalry

among the more numerous GenCos in the 30-bus test case that results in a more difficult learning

environment and less economic capacity withholding.

5.7 Comparisons of Empirical ISO/RTO Day-Ahead Market Net Surplus

Comparisons of empirical ISO/RTO day-ahead market net surplus (congestion rent) collections

with our simulation findings are not straightforward. For example, the “congestion costs,” “congestion

charges,” and “net congestion revenues” data presented in the ISO/RTO state-of-the-market and mar-

ket monitoring reports such as PJM (2009), CAISO (2009), ISO-NE (2009), MISO (2008) are in

highly aggregated dollar form, and in some cases the explanation of calculation procedures is not fully
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given. In addition, these dollar amounts should ideally be normalized in some consistent fashion across

ISO/RTOs to correct for the size differences among ISO/RTO market footprints. It does not appear to

be possible to do this in a completely satisfactory manner based on current publicly released ISO/RTO

data.

The most complete reporting appears to be provided by PJM. In PJM (2009) Table 2-47, p. 48, the

2008 average cleared fixed plus price-sensitive load in the PJM day-ahead market is given as 76,961

MWh whereas the average cleared price-sensitive load in the PJM day-ahead market is given as only

1,846 MWh. This implies an R-ratio equal to R=0.02, which is close to R=0.0 (100% fixed demand).

In Section 7 (pp. 342) the “total congestion cost” is said to “represent the overall charge or credit to

a zone,” which we interpret to mean the difference between load payments to the ISO and generation

credits (revenues) received from the ISO, i.e., ISO net surplus. On page 339 the 2008 day-ahead

congestion costs for PJM are given as $2.66 billion. This is approximately 7% of 2008 total PJM

billings, listed as $34.3 billion.

In comparison, consider the simulation findings reported in Table 5.5 for our 30-bus test case with

R=0.0. For the no-learning case, the ratio of ISO daily net surplus to total daily billings, measured

as [GenCo daily revenues + LSE daily payments], is about 15%. For the learning case, the ratio of

ISO daily net surplus to total daily billings is about 10%. The latter learning-case findings are in line

with the 7% empirical findings for PJM, particularly since total PJM billings include settlements for

black start, ancillary services, reactive services, FTR payouts, ARR credits, and transmission charges

in addition to settlements for load and generation day-ahead energy trades.

In CAISO (2009) Section 5, p. 5.3(103), the CAISO “inter-zonal congestion charges” for the day-

ahead and hour-ahead markets in year 2008 are listed as $176 million. However, these charges are

calculated as the product of the “congestion price” (branch shadow price) and the power flow on the

branches connecting variously specified zones rather than the difference between load payments and

generator revenues as used in this study. In ISO-NE (2009) Section 3.4, p. 70, the combined 2008

Net Congestion Revenue for the ISO-NE real-time and day-ahead markets is listed as $121 million,

where “net congestion revenue” is calculated as the product of branch flows and branch shadow prices.

In Figure 46 (p. 68) of MISO (2008) Section V, the 2007 congestion cost for the MISO day-ahead
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market is listed as approximately $633 million and the 2007 total congestion cost combining both day-

ahead and real-time markets is listed as approximately $713 million. “Congestion cost” for the MISO

is defined (p. 67) as “the difference in LMP prices between the locations multiplied by the amount of

the transfer.”

5.8 Concluding Remarks

ISOs for restructured wholesale power markets are typically organized as independent not-for-profit

entities with a fiduciary responsibility for ensuring the efficiency as well as reliability of market oper-

ations. Maximization of ISO net surplus is certainly not the intended objective of ISOs. Nevertheless,

ISO net surplus represents a net earnings stream whose use is discretionary to the ISO.

The findings presented in Section 5.3, Section 5.4, Section 5.5 and Section 5.6 demonstrate that

ISO net surplus can be substantial in the presence of grid congestion. ISO net surplus was found to be

particularly large when demand was predominately fixed (insensitive to price) and GenCos were able

to learn over time to strategically report supply offers with higher-than-true marginal costs. Congestion

and strategic reporting (encouraged by the presence of fixed demand) reduce market efficiency to the

extent they result in the dispatch of more expensive generation in place of cheaper generation (out-of-

merit-order dispatch) and/or a failure to meet serviceable price-sensitive demand; cf. Fig. 3.4.

In Litvinov, E. , Zhao, F. and Zheng, T. (2009) the authors note that “under the current ISO practice,

the congestion revenue gathered by the ISO is largely returned to the load and transmission owners, re-

sembling the government surplus as part of the social surplus in welfare economics.” However, welfare

economists do not assert the unqualified desirability of assigning government tax revenue dollars the

same weight as private trader net surplus dollars in market objective functions, as is done in the ISO

day-ahead market objective function (3.2). An equal weighting is especially problematic if the govern-

ment redistributes tax revenues to third parties with high entry barriers (e.g., transmission owners) and

this redistribution effectively rewards these third parties for maintaining social costs (e.g., congestion)

that the government hopes to alleviate.

A key social welfare issue for the ISO day-ahead market objective function (3.2) is whether a dollar

flowing to the ISO is properly treated as having the same social benefit as a dollar flowing to a private
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energy buyer or seller. The answer surely depends on social opportunity costs, i.e., on the net social

benefits of alternative uses to which such dollars could be put. This issue would seem to require further

serious study.

For example, in some regions the ISO net surplus is used in part to encourage new transmission

investment through the subsidization of financial transmission rights (FTRs) for those who invest in

new transmission capacity. This practice could lead to a reduction of ISO net surplus to the extent

that congestion is alleviated.1 Nevertheless, transmission investment needs can arise for reasons other

than congestion (e.g., the need to reach distributed energy resources), and congestion might better

be alleviated by more local generation rather than by more transmission capacity. Consequently, the

administrative subsidization of transmission investment through the distribution of ISO net surplus to

FTR holders could inadvertently create additional sources of social inefficiency.

In addition, ISO net surplus is also used in part to compensate load. Here, however, it is important

to keep in mind the intended market efficiency rationale for LMP pricing in relation to load: namely, to

encourage load to locate where it can be serviced most cheaply. To the extent that redistribution of ISO

net surplus to load dampens this incentive, it can be an unintended source of social inefficiency viewed

from a dynamic vantage point.

Another troubling issue also arises. As seen in Section 5.3 and Section 5.4, ISO and GenCo net

surplus collections dramatically increase when the price-sensitivity of demand is low and the GenCos

have learning capabilities enabling them to exercise capacity withholding. On the other hand, LSE

payments also dramatically increase. This would appear to give pure LSEs (those without genera-

tion ownership) an incentive to support congestion reduction measures, increased price-sensitivity of

demand, and increased oversight to curtail GenCo capacity withholding.

However, if LSE payments in the wholesale power market are fully reimbursed through the re-

ceipt of regulated rates for sale of downstream (retail) electric power, and the LSEs are able to secure

timely increases in these regulated rates in step with increases in wholesale power prices, then no direct

participant in the wholesale power market suffers a loss of net surplus when LMPs increase due to con-
1The extent to which ISO net surplus payouts to FTR holders have actually resulted in new transmission investment is

unclear. For example, in the CAISO report CASIO (2004) p. ES-3 reaches the following conclusion: “...the reality has been
that the LMP differences have not provided enough incentives to upgrade key facilities even after many types of FTRs and
ARRs are provided.”
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gestion, fixed demand, and/or GenCo capacity withholding. Rather, to the extent that retail consumers

are protected against high wholesale prices by locally regulated retail prices, losses in net surplus are in

effect borne by taxpayers. Moreover, barriers to entry into transmission, generation, and load servicing

could then lead to the persistence over time of socially inefficient rents, i.e., net surplus collections in

excess of the amounts needed to maintain resources in their current productive uses.

Power market researchers recognize that an important goal of market design is to ensure the struc-

tural alignment of participant objectives with socially desirable outcomes, thus reducing the need for

oversight of participant behaviors, see Sauma, E. and Oren, S. (2009). The main conclusion drawn

from the findings in this study is that net surplus collections are not structurally well-aligned with social

efficiency objectives in ISO-managed wholesale power markets operating under LMP. The immediate

practical import is the desirability of encouraging more transparent public reporting and oversight of

net surplus collections and uses to maintain the confidence of both market participants and the public

at large.
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CHAPTER 6. GENCO CAPACITY WITHHOLDING STUDY

6.1 Introduction

This chapter uses a dynamic 5-bus test case implemented via the AMES Wholesale Power Market

Test Bed to investigate strategic capacity withholding by generation companies (GenCos) in restruc-

tured wholesale power markets. The strategic behaviors of the GenCos are simulated by means of the

VRE stochastic reinforcement learning algorithm introduced and explained in earlier chapters. The

learning GenCos attempt to improve their net earnings over time by strategic selection of their re-

ported supply offers. This strategic selection can involve economic capacity withholding (reporting of

higher-than-true marginal costs), physical capacity withholding (reporting of lower-than-true maximum

operating capacity), or combinations of the two.

Before undertaking these capacity withholding experiments, preliminary steps were first taken to

help ensure that the GenCos’ learning methods were calibrated to their decision environment. Specifi-

cally, the dynamic 5-bus test case with 100% fixed demand was used to conduct experiments involving

extensive parameter sweeps for various key VRE learning parameters. These learning calibrations

were done twice, once for economic capacity withholding and once for physical capacity withholding.

For each case, the resulting average GenCo net earnings were determined and displayed using heat

map visualizations. These visualizations were then used to determine the best (“sweet spot”) learning

parameter settings for the learning GenCos in all subsequent experiments.

Section 6.3 explains the experimental design used to explore GenCo capacity withholding un-

der economic capacity withholding and physical capacity withholding separately when GenCos have

sweet-spot VRE learning capabilities. Section 6.3.2 and Section 6.3.3 explain more carefully how these

sweet-spot VRE learning capabilities were determined. Experimental findings are reported in Sections

6.2 through 6.6. Concluding remarks are given in Section 6.7.
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6.2 5-Bus Benchmark Case: No Economic or Physical Capacity Withholding

For later reference below, recall that Table 5.1 in Chapter 5 (Section 5.3) shows hourly GenCo net

earnings without GenCo learning for a typical benchmark-case day. GenCos 1 and 2 have relatively

small net earnings in every hour, GenCo 3 located at the load-pocket bus 3 has relatively large net

earnings in every hour, and GenCo 4 only has net earnings in the peak hour 17. GenCo 5, a base-load

generator with large capacity and low marginal cost, has relatively flat net earnings across all hours.

6.3 Experimental Design and GenCo Learning Calibration

6.3.1 Experimental Design

All economic and physical capacity withholding experiments reported below are based on the

benchmark 5-bus test case detailed in Chapter 4 (Section 4.2). GenCo net earnings are used to evaluate

GenCo learning results. For simplicity, LSE demand bids are assumed to be in the form of 100% fixed

demands (no price sensitivity).

The treatment factor for economic capacity withholding experiments is the extent to which each

learning GenCo can exercise economic capacity withholding by reporting higher-than-true marginal

costs in its supply offers. The treatment factor for physical capacity withholding experiments is the

extent to which each learning GenCo can exercise physical capacity withholding by reporting lower-

than-true maximum operating capacities in its supply offers.

When GenCos have learning capabilities, random effects are present in their supply offer selections.

To control for these random effects, thirty seed values were generated using the standard Java class

“random”; see Table B.2 for a listing of these seed values. For each learning treatment these thirty seed

are used to implement thirty distinct runs, each 1000 simulated days in length.

6.3.2 GenCo Learning Calibration for Economic Capacity Withholding

In the economic capacity-withholding experiments reported below, each learning GenCo i makes

daily use of the VRE-RL algorithm to adjust the ordinate and slope parameters {aRi , bRi } of its reported

marginal cost function (3.6) in pursuit of increased net earnings. The action domain ADi for each



www.manaraa.com

101

GenCo i is constructed as in Li, H. , Sun, J. and Tesfatsion, L. (2008) to include 100 candidate supply

offer choices, each with a distinct setting for these ordinate and slope parameters.

The VRE-RL recency and experimentation parameters ri and ei for each GenCo i are fixed at

0.04 and 0.96, respectively, in keeping with the VRE-RL parameter sensitivity results determined in

Pentapalli, M. (2008). Finally, as explained and graphically depicted in Chapter 4 (Section 4.4), the

particular sweet-spot settings (α, β) = (1,100) are used for each GenCo i’s α and β learning parameters,

which in turn imply sweet-spot settings for each GenCo i’s VRE-RL initial propensity and temperature

parameters q(1)i and Ti.

6.3.3 GenCo Learning Calibration for Physical Capacity Withholding

In the physical capacity-withholding experiments reported below, each learning GenCo i makes

daily use of the VRE-RL algorithm to adjust the value of its reported maximum operating capacity

CapRUi in pursuit of increased net earnings. In particular, as clarified more carefully in Section 6.5,

experiments are conducted for a range of settings for each GenCo’s Minimum Possible Reported Max

Capacity (MPRMCap), as follows: 95% to 99% for GenCo 3; 75% to 95% for GenCo 1; and 70%

to 95% for GenCo 5. For each different MPRMCap setting, the action domain ADi for each learning

GenCo i is constructed to include 30 candidate supply offer choices, each with a distinct setting for

CapRUi lying between MPRMCap and GenCo i’s true maximum operating capacity CapUi .

The VRE-RL recency and experimentation parameters ri and ei for each GenCo i are again fixed at

0.04 and 0.96, respectively. As indicated in Table 6.1, a range of settings is then systematically tested

for each GenCo i’s VRE-RL initial propensity and temperature parameters q(1)i and Ti, or equivalently,

for each GenCo i’s α and β values.

Figure 6.1 depicts physical capacity withholding experimental findings for mean GenCo 3 net earn-

ings on day 1000 under alternative (α,β) settings assumed to be set commonly across all GenCos.

GenCo 3 is chosen for this calibration because in most hours this large supplier turns out to be pivotal

(i.e., essential for meeting fixed demand).

Three interesting observations can be made. First, the settings for (α,β) substantially affect mean

GenCo 3 net earnings in physical capacity learning experiments. Second, the sweet-spot (α,β) combi-
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Table 6.1 GenCo action domain and learning parameter settings for physical ca-
pacity withholding experiments

Action Domain Parameters

GenCo i M1i M2i M3i RIMaxL
i RIMaxU

i RIMinC
i SSi

1 1 1 (1, 30) 0.75 0.75 (0.75, 0.80, 0.85, 0.90, 0.95) 0.001
2 1 1 1 0.75 0.75 1.00 0.001
3 1 1 (1, 30) 0.75 0.75 (0.95, 0.96, 0.97, 0.98, 0.99) 0.001
4 1 1 1 0.75 0.75 1.00 0.001
5 1 1 (1, 30) 0.75 0.75 (0.70, 0.75, 0.80, 0.85, 0.90, 0.95) 0.001

Learning Parameters

GenCo i ri ei MaxDNEi α = [qi(1)/MaxDNEi] β = [qi(1)/Ti]
1 0.04 0.96 6,485.29 (1, 1/2, 1/4, 1/10, 1/24, 1/50, , 1/100) (100, 50, 10, 2, 1, 1/2)
2 0.04 0.96 110.79 (1, 1/2, 1/4, 1/10, 1/24, 1/50, , 1/100) (100, 50, 10, 2, 1, 1/2)
3 0.04 0.96 233,428.08 (1, 1/2, 1/4, 1/10, 1/24, 1/50, , 1/100) (100, 50, 10, 2, 1, 1/2)
4 0.04 0.96 592.79 (1, 1/2, 1/4, 1/10, 1/24, 1/50, , 1/100) (100, 50, 10, 2, 1, 1/2)
5 0.04 0.96 142,781.67 (1, 1/2, 1/4, 1/10, 1/24, 1/50, , 1/100) (100, 50, 10, 2, 1, 1/2)

nations associated with the highest mean GenCo 3 net earnings lie within a small area spanning combi-

nations from (1/24,100) to (1/24,50). The particular sweet-spot setting (α, β) = (1/24,100) is used for

the learning GenCos in all physical capacity withholding experiments reported in the remainder of this

chapter. Third, comparing the physical capacity withholding learning outcomes in Figure 6.1 with the

economic capacity withholding learning outcomes in Figure 4.7, it is seen that the sweet-spot region

for GenCo 3’s (α, β) learning parameters strongly depends on the particular learning environment.

6.4 5-Bus Economic Capacity Withholding Experiments

In this section, two types of experiments are studied. The first type of experiment tests the extent

to which a single learning GenCo can learn to achieve higher net earnings through economic capacity

withholding when all other GenCos report their true cost and capacity attributes to the ISO. The second

type of experiment tests the extent to which two learning GenCos can learn over time to achieve higher

net earnings through economic capacity withholding when all other GenCos report their true cost and

capacity attributes to the ISO. Of particular interest will be the extent to which the two learning GenCos

collaborate with each other in determining their economic capacity withholding strategies.
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Figure 6.1 A 2D depiction of mean outcomes on day 1000 for GenCo 3’s daily
net earnings for the benchmark dynamic 5-bus test case extended to in-
clude physical capacity withholding learning capability (with MPRM-
Cap=95%) for GenCo 3. Results are shown for a range of values for
the learning parameters (α, β) commonly set across the GenCo 3.

6.4.1 Economic Capacity Withholding by One GenCo

GenCo 3 is selected for this first type of experiment because of the critical role it plays in the

determination of LMPs. This critical role results for three reasons: (i) GenCo 3 has a large maximum

operating capacity; (ii) GenCo 3 is a pivotal supplier during peak hours; and (iii) GenCo 3’s true

marginal costs of production are relatively high.

As discussed above, GenCo 3’s learning parameters are set at the calibrated sweet-spot levels (α, β)

= (1,100). Also, GenCo 3’s action domain parameter values are set at M13=10, M23=10, M33=1, im-

plying that GenCo 3’s action domain consists of 100 possible marginal cost function choices with

varying ordinate and slope values. All other GenCos are assumed to be non-learners that report their

true cost and capacity attributes to the ISO. Consequently, each other GenCo i’s action domain pa-
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rameter values are set at M1i=1, M2i=1, and M3i=1, implying that its action domain contains only

one element: namely, GenCo i’s true marginal cost function defined over its true operating capacity

interval.

Table 6.2 Mean outcomes (with standard deviations) on day 1000 for GenCo daily
net earnings and reported supply offers when GenCo 3 can learn to ex-
ercise economic capacity withholding.

No GenCo Learning With GenCo 3 Learning

GenCo 1 DNE 1,556.41 0.00
(0.00)

GenCo 2 DNE 26.58 0.00
(0.00)

GenCo 3 DNE 56,016.09 1,699,368.20
(400,430.50)

GenCo 4 DNE 142.27 253,468.03
(72,720.50)

GenCo 5 DNE 34,266.94 33,097.68
(0.00)

GenCo 3 aR 25.0000 91.0000
(true value) (14.5270)

GenCo 3 bR 0.0100 0.2334
(true value) (0.0644)

Table 6.2 reports experimental findings both for the benchmark no-learning case and for the case in

which GenCo 3 can learn to exercise economic capacity withholding. Clearly, under learning, GenCo 3

learns to report a much higher-than-true marginal cost function that results in a substantial increase in its

net earnings. Interestingly, GenCo 4 substantially benefits along with GenCo 3, even though GenCo 4

has no learning capabilities and reports its true cost and capacity attributes. On the other hand, the

mean net earnings of GenCo 1 and GenCo 2 are reduced to zero.

The reason for this is as follows. The branch from Bus 1 to Bus 2 is persistently congested whether

or not GenCo 3 has learning capabilities. However, under learning, GenCo 3’s high reported marginal

costs during the peak hour 17 results in the higher dispatch of GenCo 4 (to max capacity) and also in

the higher dispatch of GenCo 5 in order to meet demand in the load pocket surrounding GenCo 3 at

Bus 3. GenCo 1 and GenCo 2 have to be backed down to 0 in order to permit GenCo 5 to be called up

to service this demand without overloading the branch from Bus 1 to Bus 2.
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6.4.2 Economic Capacity Withholding by Two GenCos

Two different pairs of learning GenCos are examined for this second type of experiment: Case (1)

GenCo 1 and GenCo 3; and Case (2) GenCo 3 and GenCo 5. The reason for these choices is as follows.

For case (1), GenCo 1 is a small GenCo having low true marginal cost whereas GenCo 3 is a pivotal

supplier during peak hours with relatively high true marginal costs. Can GenCo 1 learn to “free ride” on

the market power exercised by GenCo 3 in order to improve its net earnings? For case (2), GenCo 3 and

GenCo 5 both have large maximum operating capacities, but GenCo 5 has relatively lower marginal

costs. Can GenCo 5 learn to undercut GenCo 3’s supply offers when GenCo 3 reports aggressively

high supply offers, thus raising its net earnings?

Table 6.3 reports mean outcomes for Case (1), in which GenCo 1 and GenCo 3 are the only learners.

As indicated, GenCo 3 learns to report much higher-than-true marginal cost functions and attains much

higher daily net earnings compared to the benchmark no-learning case. GenCo 1 also learns to report

higher-than-true marginal cost functions, yet GenCo 1 does not manage to attain higher net earnings.

Interestingly, the net earnings and reported marginal cost results presented in Table 6.3 for the case

in which GenCo 1 and GenCo 3 are both learners are similar to the corresponding results reported in

Table 6.2 for the case in which only GenCo 3 is a learner. The reason for this is partly explained by

the findings earlier discussed in Section 6.4.1 and Section 6.2. Due to the persistent congestion on the

branch from Bus 1 to Bus 2, and to GenCo 3’s relatively large operating capacity, GenCo 3 is a pivotal

supplier in most hours, meaning that it’s capacity is needed to meet fixed demand. On the other hand,

GenCo 1 is a relatively small unit located on the “wrong” side of the congested branch and typically

fails to be dispatched at any positive level. The result is that GenCo 3’s reported supply offers have a

much greater effect on dispatch results. GenCo 3 learns to take advantage of this situation by raising

its reported marginal costs, resulting in an increase in the LMP at its Bus 3. In contrast, despite its

learning capabilities, GenCo 1’s supply offers are essentially irrelevant for the determination of price

and dispatch levels, as well as for the determination of GenCo 3’s reported supply offers.

Table 6.4 depicts mean outcomes for Case (2), in which GenCo 3 and GenCo 5 are the only learners.

As indicated, both GenCo 3 and GenCo 5 learn to report much higher-than-true marginal costs and both

attain substantially higher daily net earnings compared to the benchmark no-learning case. GenCo 3’s
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Table 6.3 Mean outcomes (with standard deviations) on day 1000 for GenCo net
earnings and reported supply offers when both GenCo 1 and GenCo 3
can learn to exercise economic capacity withholding.

No GenCo Learning With GenCo 1, 3 Learning

GenCo 1 DNE 1,556.41 0.00
(0.00)

GenCo 2 DNE 26.58 0.00
(0.00)

GenCo 3 DNE 56,016.09 1,699,368.20
(400,430.50)

GenCo 4 DNE 142.27 253,468.03
(72,720.50)

GenCo 5 DNE 34,266.94 33,097.68
(0.00)

GenCo 1 aR 14.0000 26.7006
(12.8204)

GenCo 1 bR 0.0050 0.1363
(0.2016)

GenCo 3 aR 25.0000 91.0000
(14.5270)

GenCo 3 bR 0.0100 0.2334
(0.0644)

net earnings, in particular, dramatically increase.

The explanation for these findings is as follows. GenCo 5 is essentially a base-load generator with

large capacity and low true marginal cost. When both GenCo 3 and GenCo 5 report higher-than-true

marginal costs, the branch connecting Bus 1 to Bus 2 becomes persistently congested, constraining the

use of the relatively cheaper generation from GenCo 1 and GenCo 2 at Bus 1. GenCo 4, a relatively

small unit, is then dispatched at its maximum capacity because its reported marginal costs are actually

lower than the reported marginal costs of GenCo 3 and GenCo 5. This leaves GenCo 3 and GenCo 5

as pivotal suppliers. The dispatch of GenCo 5 is constrained by congestion considerations, which acts

as a brake on its net earnings. GenCo 3, however, induces no such network constraint in terms of its

pivotal status for the load at its own Bus 3. This permits GenCo 3 to raise its reported marginal costs

to very high levels without concern for a cut-back in its dispatch, which in turn results in a very high

LMP at its load-pocket Bus 3 and in correspondingly high daily net earnings for GenCo 3.

Comparing the Case (2) findings presented in Table 6.4 to the Case (1) findings presented in Ta-

ble 6.3, it is seen that GenCo 3’s daily net earnings are about the same. The implication is that GenCo 3

is not strategically interacting with GenCo 5 in Case (2); it behaves essentially the same way whether or
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Table 6.4 Mean outcomes (with standard deviations) on day 1000 for GenCo
daily net earnings and reported supply offers when both GenCo 3 and
GenCo 5 can learn to exercise economic capacity withholding.

No GenCo Learning With GenCo 3, 5 Learning

GenCo 1 DNE 1,556.41 20,552.07
(47,427.81)

GenCo 2 DNE 26.58 17,516.78
(42,538.13)

GenCo 3 DNE 56,016.09 1,689,877.00
(388,472.72 )

GenCo 4 DNE 142.27 299,156.86
(93,287.70)

GenCo 5 DNE 34,266.94 129,744.81
(96,084.46)

GenCo 3 aR 25.0000 92.8333
(12.3654)

GenCo 3 bR 0.0100 0.2202
(0.0671)

GenCo 5 aR 10.0000 18.6560
(10.3939)

GenCo 5 bR 0.0070 0.0238
(0.0286)

not GenCo 5 has learning capabilities. On the other hand, in Case (2) GenCo 5 is able to take advantage

of GenCo 3’s economic capacity withholding to raise its own reported marginal costs without risking a

cut-back in its dispatch, which substantially increases its daily net earnings.

Case (2) also differs from Case (1) in another interesting way. In Case (2), GenCo 5 ends up

reporting marginal costs that are higher than the marginal costs of the non-learning GenCos 1 and 2.

As a result, GenCo 1 and GenCo 2 located at Bus 1 are now dispatched at positive levels even though

the branch connecting Bus 1 to Bus 2 is persistently congested. Consequently, these non-learning

GenCos are better off in Case (2) than in Case (1).

6.5 5-Bus Physical Capacity Withholding Experiments

In parallel with subsection 6.4, this subsection considers two types of experiments. The first type

of experiment tests the extent to which a single learning GenCo can learn to achieve higher net earn-

ings through physical capacity withholding when all other GenCos report their true cost and capacity

attributes to the ISO. The second type of experiment tests the extent to which two learning GenCos can
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learn over time to achieve higher net earnings through physical capacity withholding when all other

GenCos report their true cost and capacity attributes to the ISO. As in subsection 6.4, of particular

interest will be the extent to which the two learning GenCos collaborate with each other in determining

their economic capacity withholding strategies.

The treatment factors for these experiments are the maximum permitted shrinkages for the GenCos’

reported maximum capacities to the ISO. The tested ranges for these treatment factors are chosen to

avoid supply inadequacy, i.e., the reporting of capacities that are insufficient to meet total fixed demand.

6.5.1 Physical Capacity Withholding by One GenCo

In the experiments presented in this subsection, as in subsection 6.4.1, only GenCo 3 has learning

capabilities. However, here GenCo 3’s learning is restricted to the ability to exercise physical capacity

withholding. The only treatment factor is GenCo 3’s action-domain parameter MPRMCap, i.e., the

minimum possible reported maximum capacity that GenCo 3 is able to report to the ISO as a percentage

of its true maximum capacity. For example, given MPRMCap = 99%, GenCo 3’s reported maximum

capacity must be at least 99% of its true maximum capacity. In the experiments presented below,

MPRMCap is varied between 95% and 99%. All other GenCos are assumed to report their true costs

and capacities to the ISO.

The findings presented in Table 6.5 show that GenCo 3 is able to substantially increase its mean

daily net earnings through physical capacity withholding. Indeed, GenCo 3’s daily net earnings steadily

increase as it increases its physical capacity withholding from 1% to 5% of its true maximum capacity.

These increases in daily net earnings are at the expense of GenCo 1 and GenCo 2, who do worse as

GenCo 3’s withholding increases. On the other hand, GenCo 4 and GenCo 5 experience modest gains

in daily net earnings from GenCo 3’s withholding.

Figure 6.2 depicts GenCo 3’s actual reported maximum capacity versus its optimal reported capac-

ity (ORCap) under a range of different MPRMCap settings for GenCo 3. More precisely, for each given

MPRMCap setting, ORCap gives the best possible capacity value that GenCo 3 could report to the ISO

in the sense that this reporting leads to the highest mean daily net earnings for GenCo 3. Figure 6.2

shows that the mean maximum capacity value that GenCo 3 learns to report to the ISO by day 500 is
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Table 6.5 Mean outcomes (with standard deviations) on day 500 for GenCo daily
net earnings and reported maximum capacity values when GenCo 3 can
learn to exercise physical capacity withholding. Results are shown for
a range of MPRMCap values for GenCo 3.

GenCo 3 MPRMCap 99% 98% 97% 96% 95%

GenCo 1 DNE 1,519.60 1,515.29 1,461.74 1,451.66 1,397.42
(2.34) (6.82) (7.91) (8.30) (10.55)

GenCo 2 DNE 26.36 26.21 24.99 24.72 23.69
(0.00) (0.33) (0.00) (0.45) (0.25)

GenCo 3 DNE 65,532.62 66,389.84 78,855.13 80,724.79 92,830.96
(655.02) (1,534.96) (1,884.59) (1,517.63) (2,368.11)

GenCo 4 DNE 176.51 209.16 300.41 353.49 471.42
(7.27) (25.67) (13.97) (38.51) (19.94)

GenCo 5 DNE 34,576.94 34,530.62 34,839.52 34,815.19 35,121.16
(15.94) (27.02) (52.91) (20.97) (67.58)

GenCo 3 RepMaxCap (MW) 515.99 512.86 505.42 502.02 495.49
(0.77) (2.44) (1.01) (2.40) (1.04)

GenCo 3 RepMaxCap/TrueMaxCap (%) 99.23% 98.63% 97.20% 96.54% 95.29%
(0.15%) (0.47%) (0.19%) (0.46%) (0.20%)

close to optimal for each MPRMCap setting.

6.5.2 Physical Capacity Withholding by Two GenCos

As in section 6.4.2, learning experiments are conducted for pairs of learning GenCos as follows:

Case (3) GenCo 1 and GenCo 3; and Case (4) GenCo 3 and GenCo 5. Here, however, learning is

restricted to physical capacity withholding. Choosing the same pairings as in section 6.4.2 permits

meaningful comparisons between learning experiments for economic versus physical capacity with-

holding.

The treatment factors for the Case (3) experiments are the MPRMCap settings for GenCo 1 and

GenCo 3. The MPRMCap setting for GenCo 1 is varied from 75% to 95% and the MPRMCap setting

for GenCo 3 is varied from 95% to 99%. All non-learning GenCos report their true cost and capacity

attributes to the ISO.

As a benchmark of comparison for Case (3), Figure 6.3 presents typical daily net earnings for

GenCo 1 and GenCo 3 for the benchmark no-learning case under a range of settings for the maximum

capacities for GenCo 1 and GenCo 3. From these findings it can be seen that GenCo 1, a relatively small
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Figure 6.2 Mean outcomes on day 500 for the learned versus optimal values for
GenCo 3’s reported maximum capacity values when GenCo 3 can
learn to exercise physical capacity withholding. Results are shown
for a range of different minimum possible reported maximum capacity
(MPRMCap) values for GenCo 3.

unit, does best when its maximum capacity is set at 75% of its benchmark true maximum capacity and

the maximum capacity of the relatively large GenCo 3 is set at 99% of its benchmark true maximum

capacity. In contrast, GenCo 3 does best when its maximum capacity is set at 95% of its benchmark

true maximum capacity no matter what value is set for GenCo 1’s maximum capacity.

Figure 6.4 presents mean daily net earnings for GenCo 1 and GenCo 3 on day 5000 when both

GenCos can learn to exercise physical capacity withholding. From the left-hand side of this figure, it

is seen that GenCo 1 attains its highest mean daily net earnings when its MPRMCap value is set at its

lowest test level (75%) and the MPRMCap value for GenCo 3 is set at its highest tested level (99%).

Comparing the left-hand side of Figure 6.4 to the left-hand side of Figure 6.3, it is also seen that the

MPRMCap region over which GenCo 1 attains its highest mean daily net earnings under learning is

smaller than the maximum capacity region over which it attains its highest daily net earnings in the

benchmark no-learning case.

Interestingly, in parallel with the no-learning findings reported in Figure 6.3, it is seen in the right-

hand side of Figure 6.4 that GenCo 3 attains its highest mean daily net earnings when its MPRMCap
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Figure 6.3 Typical daily net earnings for GenCo 1 and GenCo 3 for the benchmark
no-learning case under a range of maximum capacity settings for each
GenCo. The maximum capacity settings are depicted in percentage
form (relative to benchmark true maximum capacities).

Figure 6.4 Mean daily net earnings on day 500 for GenCo 1 and GenCo 3 when
both GenCos can learn to exercise physical capacity withholding. Re-
sults are shown for a range of MPRMCap values for each GenCo.

Figure 6.5 Mean reported maximum capacities (as a percentage of benchmark
true maximum capacities) on day 500 for GenCo 1 and GenCo 3 when
both GenCos can learn to exercise physical capacity withholding. Re-
sults are shown for a range of MPRMCap values for each GenCo.
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value is set at its lowest tested level 95%. Also, the vertically-striped pattern for GenCo 3’s mean daily

net earnings indicates that GenCo 1’s MPRMCap settings have essentially no effect on the daily net

earnings attained by GenCo 3.

Figure 6.5 displays mean reported maximum capacities (as a percentage of benchmark true maxi-

mum capacities) for GenCo 1 and GenCo 3 on day 500 when both these GenCos have physical capacity

learning capabilities. From the left-hand side of the figure, it is seen that GenCo 1’s mean reported

maximum capacity is somewhat higher than its MPRMCap setting for each tested pair of MPRM-

Cap settings for GenCo 1 and GenCo 3. Moreover, as indicated by the horizontally-striped pattern in

GenCo 1’s reported maximum capacity results, GenCo 3’s reported maximum capacity choices have

essentially no effect on the reported maximum capacity choices made by GenCo 1. As indicated in the

right-hand side of the figure, GenCo 3’s mean reported maximum capacity is close to its MPRMCap

setting for each tested pair of MPRMCap settings for GenCo 1 and 3. Moreover, as indicated by the

vertically-striped pattern in GenCo 3’s reported maximum capacity results, GenCo 1’s reported maxi-

mum capacity choices have essentially no effect on the reported maximum capacity choices made by

GenCo 3.

In summary, in the Case (3) physical capacity learning experiments involving GenCo 1 and GenCo 3,

the smaller GenCo 1 is able to attain higher net earnings by essentially free riding on the strategic

physical capacity reporting of the larger GenCo 3. In contrast, GenCo 3’s reported maximum capacity

choices are essentially uncorrelated with the reported maximum capacity choices of GenCo 1.

For the Case (4) physical capacity learning experiments involving GenCo 3 and GenCo 5, the

treatment factors are the MPRMCap settings for GenCos 3 and GenCo 5. The MPRMCap setting for

GenCo 3 is varied from 95% to 99% and the MPRMCap setting for GenCo 5 is varied from 70% to

95%. All non-learning GenCos report their true cost and capacity attributes to the ISO.

Figure 6.6 shows typical daily net earnings for GenCo 3 and GenCo 5 for the benchmark no-

learning case under a range of different settings for their maximum capacities expressed as a percentage

of their benchmark true maximum capacities. From the left-hand side of the figure it is seen that

GenCo 3 attains its highest daily net earnings at the lowest maximum capacity setting (95%), regardless

of the maximum capacity setting for GenCo 5. On the other hand, from the right-hand side of the figure
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it is seen that GenCo 5 attains its highest daily net earnings when its maximum capacity is set at the

lowest tested level (70%) while at the same time the maximum capacity for GenCo 3 is set at its lowest

tested level (95%). Thus, GenCo 5’s daily net earnings are affected by the maximum capacity setting

for GenCo 3.

Figure 6.7 shows GenCo 3 and GenCo 5 mean daily net earnings on day 500 when both GenCos

have physical capacity learning capabilities. Results are shown for a range of MPRMCap values for

each GenCo. From the left-hand side of the figure it is seen that GenCo 3 attains its highest daily net

earnings when its MPRMCap value is set to the lowest tested level (95%), regardless of the MPRMCap

setting for GenCo 5. In contrast, from the right-hand side of the figure it is seen that GenCo 5 attains

its highest daily net earnings when its MPRMCap value is set to the lowest tested level (70%) while at

the same time the MPRMCap value for GenCo 3 is set at its lowest tested level (95%). Consequently,

in similarity to the no-learning case, GenCo 5’s daily net earnings under learning are affected by the

MPRMCap value set for GenCo 3.

Figure 6.8 shows GenCo 3 and GenCo 5 mean reported maximum capacities as a percentage of

their benchmark true maximum capacities when both GenCos have physical capacity learning capa-

bilities. Results are reported for a range of MPRMCap values for each GenCo. From the left-hand

side of the figure it is seen that GenCo 3’s mean reported maximum capacity is close to its MPRM-

Cap value for each tested combination of MPRMCap settings for GenCo 3 and GenCo 5. Also, the

horizontally-striped pattern of the results indicates that GenCo 5’s reported maximum capacities have

very little effect on GenCo 3’s reported maximum capacities. The right-hand side of the figure shows

that GenCo 5’s mean reported maximum capacity is higher than its MPRMCap value for each tested

combination of MPRMCap settings for GenCo 3 and GenCo 5. Also, GenCo 5’s reported maximum

capacities are weakly correlated with GenCo 3’s reported maximum capacities.

6.6 5-Bus Combined Economic and Physical Capacity Withholding Experiments

In this section, two types of experiments are studied. The first type of experiment tests the extent

to which a single learning GenCo can learn to achieve higher net earnings through economic and/or

physical capacity withholding when all other GenCos report their true cost and capacity attributes to
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Figure 6.6 Typical daily net earnings for GenCo 3 and GenCo 5 for the benchmark
no-learning case under a range of maximum capacity settings for each
GenCo. The maximum capacity settings are depicted in percentage
form (relative to benchmark true maximum capacities).

Figure 6.7 Mean daily net earnings on day 500 for GenCo 3 and GenCo 5 when
both GenCos can learn to exercise physical capacity withholding. Re-
sults are shown for a range of MPRMCap values for each GenCo.

Figure 6.8 Mean reported maximum capacities (as a percentage of benchmark
true maximum capacities) on day 500 for GenCo 3 and GenCo 5 when
both GenCos can learn to exercise physical capacity withholding. Re-
sults are shown for a range of MPRMCap values for each GenCo.
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the ISO. The second type of experiment tests the extent to which two learning GenCos can learn over

time to achieve higher net earnings through economic and/or physical capacity withholding when all

other GenCos report their true cost and capacity attributes to the ISO.

6.6.1 Combined Economic and Physical Capacity Withholding by One GenCo

For reasons elaborated in earlier subsections, GenCo 3 is selected as the one learning GenCo able

to learn to exercise either economic or physical capacity withholding. Of particular interest will be

whether one type of withholding dominates the other.

Table 6.6 presents mean outcomes (with standard deviations) for GenCo daily net earnings and

GenCo 3 supply offers on Day 1000 under a range of MPRMCap settings for GenCo 3. It is seen that

GenCo 3 attains much higher mean daily net earnings than in the benchmark no-learning case. More-

over, the mean daily net earnings for GenCo 3 monotonically increase with increases in the MPRMCap

setting for GenCo 3.

However, comparing the findings in Table 6.6 with the benchmark no-learning findings in Table 6.2,

it is seen that the increase in GenCo 3’s mean net earnings through economic capacity withholding are

substantially greater than the increases in its mean net earnings from successively higher physical ca-

pacity withholding. Thus, although both forms of capacity withholding add to GenCo 3’s net earnings,

economic capacity withholding is the primary channel through which it can increase its net earnings.

6.6.2 Combined Economic and Physical Capacity Withholding by Two GenCos

As in sections 6.4.2-6.5.2, learning experiments are conducted for a pair of learning GenCos:

namely, GenCo 3 and GenCo 5. Here, however, the two learning GenCos are permitted to engage

in both economic and physical capacity withholding. All other GenCos are assumed to report their true

cost and capacity attributes to the ISO.

Table 6.7 shows mean outcomes (with standard deviations) on day 1000 for GenCo net earnings

and reported supply offers when GenCo 3 and GenCo 5 having learning capabilities for both economic

and physical capacity withholding. Comparing these results to the results presented in Table 6.2 for

the benchmark no-learning case, it is seen that GenCo 3 and GenCo 5 both attain much higher mean
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Table 6.6 Mean outcomes (with standard deviations) on day 1000 for GenCo net
earnings and reported supply offers when GenCo 3 can learn to exercise
both economic and physical capacity withholding. Results are reported
for a range of different MPRMCap values for GenCo 3.

GenCo 3 MPRMCap 99% 98% 97% 96% 95%

GenCo 1 DNE 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

GenCo 2 DNE 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

GenCo 3 DNE 1,973,577.19 1,980,160.94 1,986,854.87 1,993,661.93 2,000,585.19
(277,338.27) (278,227.89) (279,273.41) (280,482.08) (281,861.29)

GenCo 4 DNE 303,449.92 304,616.65 305,802.88 307,009.16 308,236.04
(50,027.46) (50,186.55) (50,372.87) (50,587.68) (50,832.28)

GenCo 5 DNE 33,097.68 33,097.68 33,097.68 33,097.68 33,097.68
(0.00) (0.00) (0.00) (0.00) (0.00)

GenCo 3 aR 98.57 98.57 98.57 98.57 98.57
(true a=25.00) (7.82) (7.82) (7.82) (7.82) (7.82)

GenCo 3 bR 0.27 0.27 0.27 0.27 0.27
(true b=0.01) (0.05) (0.05) (0.05) (0.05) (0.05)

GenCo 3 Reported Max Cap (MW) 517.62 515.23 512.85 510.47 508.08
(TrueMaxCap=520) (2.13) (4.27) (6.40) (8.54) (10.67)

GenCo 3 RepMaxCap/TrueMaxCap (%) 99.54% 99.08% 98.63% 98.17% 97.71%
(0.41%) (0.82%) (1.23%) (1.64%) (2.05%)

net earnings under learning. These higher mean net earnings are primarily due to economic capacity

withholding, in the form of substantially higher reported ordinate and slope values {aR, bR} for the

GenCos’ reported marginal cost functions (3.6). For example, GenCo 3 raises its reported ordinate

value aR dramatically, to almost four times its true value, while GenCo 5 raises its reported ordinate

value aR to over double its true value.

Both GenCos also attain successively higher mean net earnings as the MPRMCap value for GenCo 3

is decreased, permitting GenCo 3 to exercise greater physical capacity withholding. However, these in-

creases in mean net earnings are much smaller in percentage terms than the sharp increases resulting

from economic capacity withholding.

In summary, while both economic and physical capacity holding add to the mean net earnings of

GenCo 3 and GenCo 5, economic capacity withholding is the primary means through which they attain

higher mean net earnings. From Table 6.7, it is also seen that GenCo 3 attains much higher mean net
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Table 6.7 Mean outcomes (with standard deviations) on day 1000 for GenCo daily
net earnings and reported supply offers when GenCo 3 and GenCo 5
can learn to exercise both economic and physical capacity withholding.
Results are reported for a fixed MPRMCap setting of 70% for GenCo 5
and for a range of possible MPRMCap settings for GenCo 3.

GenCo 3 MPRMCap 99% 98% 97% 96% 95%

GenCo 1 DNE 52,462.61 51,744.44 52,380.00 62,356.15 74,969.74
(75,157.13) (75,285.93) (74,686.83) (78,612.73) (80,573.60)

GenCo 2 DNE 46,174.07 45,521.31 46,099.53 55,078.56 66,413.40
(67,610.86) (67,739.12) (67,179.75) (70,738.39) (72,545.32)

GenCo 3 DNE 2,030,943.15 2,068,246.24 2,083,177.71 2,139,915.52 2,244,762.61
(345,177.83) (315,194.58) (339,489.78) (452,137.70) (440,142.52)

GenCo 4 DNE 402,351.76 408,758.31 411,039.92 429,387.00 461,214.44
(133,209.50) (130,103.54) (130,289.40) (155,201.83) (148,768.56)

GenCo 5 DNE 192,264.38 192,291.10 192,642.57 215,248.40 246,805.08
(153,958.15) (153,948.98) (153,918.35) (165,392.36) (169,829.01)

GenCo 3 aR 98.57 98.57 100.00 97.14 98.57
(true a=25.00) (7.82) (7.82) (0.00) (10.87) (7.82)

GenCo 3 bR 0.27 0.28 0.27 0.27 0.27
(true b=0.01) (0.05) (0.05) (0.06) (0.06) (0.06)

GenCo 5 aR 22.90 22.90 22.90 24.47 26.07
(true a=10.00) (12.92) (12.92) (12.92) (13.37) (13.70)

GenCo 5 bR 0.05 0.05 0.05 0.05 0.06
(true b=0.007) (0.05) (0.05) (0.05) (0.05) (0.05)

GenCo 3 Reported Max Cap (MW) 517.66 515.58 512.72 509.25 505.92
(TrueMaxCap=520) (2.03) (4.22) (6.70) (8.07) (10.67)

GenCo 5 Reported Max Cap (MW) 507.00 508.50 508.50 511.50 508.50
(TrueMaxCap=600) (60.18) (59.66) (59.66) (60.82) (61.95)

GenCo 3 RepMaxCap/TrueMaxCap (%) 99.55% 99.15% 98.60% 97.93% 97.29%
(0.39%) (0.81%) (1.29%) (1.55%) (2.05%)

GenCo 5 RepMaxCap/TrueMaxCap (%) 84.50% 84.75% 84.75% 85.25% 84.75%
(10.03%) (9.94%) (9.94%) (10.14%) (10.33%)

earnings than GenCo 5. The reasons for this are similar to the reasons discussed in section 6.4.2.

6.7 Comparisons of Results

This subsection summarizes the detailed experimental findings for economic and physical capacity

withholding reported in previous subsections.
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6.7.1 One GenCo Case Comparison

From Table 6.2, Table 6.5 and Table 6.6, it is seen that the relatively large and expensive GenCo 3

(located at the load-pocket Bus 3) attains much higher mean net earnings relative to the benchmark

no-learning case when it is able to exercise economic capacity withholding, whether or not it engages

in physical capacity withholding. Conversely, although GenCo 3’s mean net earnings increase when it

exercises only physical capacity withholding, increasingly so for successively smaller settings for its

MPRMCap value, these gains are substantially smaller.

6.7.2 Two GenCos Case Comparison

Joint learning experimental findings for GenCo 3 and the relatively small and inexpensive GenCo 1

are reported in Table 6.3, Figure 6.3, Figure 6.4, and Figure 6.5. It is seen that GenCo 3 attains much

higher mean net earnings relative to the benchmark no-learning case when using economic capacity

withholding, whether or not it engages in physical capacity withholding. Moreover, GenCo 3 has more

market power than GenCo 1 because if its pivotal suppler status. GenCo 1 suffers a loss in mean

net earnings relative to the benchmark no-learning case when GenCo 3 exercises physical capacity

withholding, due to network effects; and GenCo 1 loses out completely (zero dispatch level) when

GenCo 3 engages in economic capacity withholding. Conversely, GenCo 3 is largely unaffected by the

capacity withholding choices of GenCo 1.

Joint learning experimental findings for GenCo 3 and the relatively large but inexpensive base load

GenCo 5 are presented in Table 6.4, Figure 6.6, Figure 6.7, Figure 6.8, and Table 6.7. It is seen that

both GenCos attain much higher mean net earnings relative to the benchmark no-learning case when

they exercise economic capacity withholding alone or a combination of economic and physical capacity

withholding. Conversely, GenCo 3 and GenCo 5 achieve much smaller gains in mean net earnings when

they only exercise physical capacity withholding. Also, GenCo 3’s favorable load-pocket location gives

it more market power than GenCo 5 because it is a pivotal supplier in almost every hour of every run.

GenCo 5’s best capacity withholding choices are affected by GenCo 3’s choices, but GenCo 3’s best

capacity withholding choices are largely unaffected by the choices of GenCo 5.

Comparing these two joint learning experiments with each other, it is seen that GenCo 5 is in a
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much better position than GenCo 1 to take advantage of the capacity withholding choices of GenCo 3

to increase its own mean net earnings. Three factors work against GenCo 1 here: (i) the persistent

congestion on the branch connecting Bus 1 to Bus 2; (ii) the location of GenCo 1 at Bus 1, semi-

islanded away from the load pocket Bus 3; and (iii) the relatively small capacity of GenCo 1.

6.7.3 Conclusion

The experiments reported in this chapter indicate that economic capacity withholding is much more

advantageous for GenCos than physical capacity withholding in terms of raising their mean net earn-

ings. However, in these experiments the ISO does not mitigate the exercise of market power by the

GenCos in any way. Effective market power mitigation requires monitoring of GenCo reported costs

and capacities relative to true. It could be the case that economic capacity withholding is more easily

monitored and controlled than physical capacity withholding, because true operating costs can be es-

timated rather well from publicly available information such as fuel type and fuel prices. Conversely,

it could be more difficult to check whether forced outages of generation units are accurately being

reported.

Finally, in the present experiments the inexpensive but small GenCo 1 located at Bus 1 is persis-

tently non-marginal, hence its capacity withholding actions have little effect on the mean net earnings

of other GenCos. Conversely, when the relatively big GenCos 3 and 5 exercise capacity withholding,

GenCo 1 can either win or lose. Specifically, relative to the benchmark no-learning case, GenCo 1:

(a) loses big (zero dispatch) when either GenCo 3 alone engages in economic capacity withholding,

GenCo 3 and GenCo 1 both engage in economic capacity withholding, or GenCo 3 engages in com-

bined economic and physical capacity withholding; (b) loses modestly when GenCo 3 alone engages in

physical capacity withholding; and (c) gains big when GenCo 3 and GenCo 5 both engage in economic

capacity withholding, with or without physical capacity withholding.

The key for GenCo 1 is the economic capacity withholding activity of GenCo 5 located at the

neighboring Bus 5. If GenCo 5 rather aggressively reports higher-than-true marginal costs, GenCo 1

can appear to be the cheaper GenCo. In this case GenCo 1 is dispatched to full capacity in advance

of GenCo 5 and thus manages to sell its generation at the very high price determined by the reported
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supply offers of the marginal GenCos 3 and/or 5.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

U.S. restructured wholesale power markets are large-scale systems encompassing physical con-

straints, administered rules of operation, and strategic human participants. The complexity of these

systems makes it difficult to model and study them using standard analytical and statistical tools.

This dissertation develops and uses an agent-based simulation platform, the AMES Wholesale

Power Market Test Bed, to systematically investigate the performance of these markets through in-

tensive computational experiments. AMES includes three types of agents: ISO, GenCos, and LSEs.

The ISO manages two types of markets - a day-ahead market and a real-time market. The interaction

and activities of these agents are modeled and simulated based on information provided in business

practices manuals from real-world restructured wholesale power markets.

The primary objective of this dissertation is to gain a better understanding of the basic performance

capabilities of U.S. restructured wholesale power markets with respect to both market efficiency and

supply adequacy, pointing out some issues and potential improvements in market design along the way.

The main contributions of the dissertation can be summarized as follows:

1. Findings from GenCo learning calibration experiments show that learning calibration strongly

affects GenCo net earnings. GenCos are able to obtain substantially greater net earnings when

their learning parameters have first been adjusted to ensure good average net earnings over the

range of possible outcomes for the particular learning environment at hand. This suggests that

future agent-based electricity market research should permit GenCos and other cognitive mar-

ket participants to engage in learning-to-learn processes to endogenously adjust their learning

algorithms to the learning problems they face.
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2. Findings from GenCo learning experiments in which the GenCos use calibrated VRE stochastic

reinforcement learning to decide which supply offers to report to the ISO demonstrate that this

simple learning algorithm works well for the GenCos. It permits the GenCos to obtain high net

earnings relative to the benchmark no-learning case in which they report their true cost and capac-

ity attributes to the ISO. The VRE learning method is extremely easy to calibrate and implement,

even in complicated multi-agent learning environments. It involves only simple updating rules,

and the only required information is the decision maker’s own past net earnings outcomes.

3. Findings from learning experiments in which GenCos use calibrated VRE stochastic reinforce-

ment learning to choose their supply offers demonstrate that the GenCos are quickly able to learn

that their most profitable strategy is to implicitly collude on higher-than-true reported marginal

cost functions, i.e., to jointly engage in economic capacity withholding. The GenCos are espe-

cially successful at raising prices (and their net earning) when LSE demand is 100% fixed (no

price sensitivity) and the ISO is forced to meet this demand in every hour no matter how ex-

pensive the required generation might be. These findings suggest the importance of encouraging

a greater sensitivity of LSE demand to price. However, even with 100% price-sensitive LSE

demand, the GenCos are still able to exercise some degree of market power, resulting in higher

prices. Consequently, what appears to be needed is more active demand-side bidding on the part

of the LSEs to counter the potential market power of the GenCos. Absent this, the only way

that ISOs can hope to prevent the exercise of GenCo market power is through the imposition of

strong market power mitigation rules that constrain GenCo supply-offer behaviors.

4. Findings from price-cap experiments, which investigate the market performance effects of changes

in GenCo supply-offer price caps, show that improperly imposed price caps can lead to increased

LMP spiking and volatility as well as increased reliability issues through inducement of supply

inadequacy, particularly around peak-demand hours. This is the case even if LMP values are

indeed lowered during other hours.

5. Findings from ISO net surplus (congestion rent) experiments show that ISO net surplus sub-

stantially increases as the price-sensitivity of demand is reduced and the learning capabilities
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of generators are increased, conditions resulting in greater economic capacity withholding and

possible market inefficiency (i.e., wastage of resources) due to out-of-merit-order dispatch. A

practical implication is that a more transparent public oversight of all net surplus collections and

uses in wholesale power markets operating under LMP would be publicly prudent because these

collections are not structurally well-aligned with market efficiency objectives.

6. Findings from GenCo capacity withholding experiments demonstrate that economic capacity

withholding is much more advantageous for GenCos than physical capacity withholding in terms

of raising their average net earnings, even when both forms of withholding are simultaneously

possible for the GenCos. These findings suggest that ISOs should monitor GenCo reported sup-

ply offers particularly for economic capacity withholding.

7. Findings from preliminary SCUC/SCED experiments (not reported on in this dissertation) show

that, for a 5-bus test case, the LMPs resulting under SCUC/SCED are more volatile than the

LMPs resulting under SCED alone. Also GenCo dispatch levels are different even though the

branch power flows do not change much. The reason is that the SCUC/SCED problem formula-

tions considers more constraints, such as ramping rates and start/stop costs.

8. In order to carry out the above research, several major extensions of the AMES Wholesale Power

Market Test Bed have been developed and tested. To date, AMES appears to be the only software

for wholesale power market research that has been made publicly available as an open source

package. It has already provided a useful foundation for the work of other electricity market

researchers (e.g., in Australia, Germany, and China), and it could facilitate the communication

and accumulation of electricity market research results in the future.

7.2 Future Work

In the past few years, agent-based modeling has become increasingly popular, and it is now widely

used in a number of different research areas. Specifically, as reported more carefully in Chapter 2,

this is the case for electricity market research. One important reason for the growing interest in agent-

based modeling among electricity market researchers is that it permits them to investigate the impacts
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of market designs on market participant behaviors as well as the impacts in turn of these behaviors on

market performance, where these market processes operate over realistically rendered transmission and

distribution grids.

The ultimate goal for agent-based electricity market test beds is to include more types of agents,

permitting the modeling of market operations at very detailed levels. Agent-based modeling permits the

incorporation of real-world market rules together with important physical aspects of real-world power

system networks. The resulting agent-based models can exploit the powerful computational capability

of multi-core cpu or super computers, thus enabling the useful simulation of real-world electricity

markets for different purposes.

Based on the experience I have gained in performing this dissertation research, including the de-

velopment of the AMES test bed, I am considering the following areas as possible directions for future

work:

1. The study of financial and operational risk management for restructured wholesale power markets

at three levels of concern: (a) regulatory level (FERC), (b) market operation level (ISO/RTO),

(c) and market trader level (e.g. GenCos, LSEs, and other market traders). The aim would be

to analysis financial and operational risks under current restructured wholesale power markets

designs, and to propose practical financial and operational risk management methods to decrease

or avoid these risks.

2. The study of impacts on market performance when GenCo agents use alternative learning be-

haviors and strategies. Different GenCo learning methods could be used to examine the effects

of learning in given electricity market environments, and to determine which learning methods

result in the best outcomes for the GenCo agents.

3. The open-source release of AMES (V3.0), which is currently in the final development stage.

This version, an extension of AMES (V2.05) released in September 2009, will include a fully

operational two-settlement system. In addition, for the day-ahead market it will include an

option to run a full SCUC/SCED process in place of the SCED-only process incorporated in

AMES(V2.05).
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4. Fuller evaluation of the test bed capabilities of AMES through the development and study of

additional empirically-motivated test cases. The requirements for these test cases are: (a) data

input validity, including reasonable data for the physical and technical side of power systems

such as transmission line parameters, generation unit costs and capacities, LSE fixed loads, and

price-sensitive demand bids; and (b) data output validity, meaning reasonable matchings between

simulated data and key real-world data such as LMPs, GenCo net earnings, LSE payments, and

ISO net surplus collections.

5. Extension of AMES to permit the study of impacts on wholesale power market performance

when LSE agents also have learning capabilities. Real-world LSEs do not typically engage in

active strategic demand bidding in current wholesale power markets because their wholesale

power market payments are reimbursed through regulated retail rates. However, the issue of LSE

learning could become more important in the future if retail systems are restructured so LSE

reimbursements from retail sales are more fully determined by competitive market forces.

6. Extension of AMES to include load, transmission operating conditions and generator operating

uncertainties in real-time market implementations. This would provide a fully operational two-

settlement system for AMES whose performance could be tested through intensive experiments.

7. Extension of Ames to permit the experimental study and evaluation of emission constraints and

other mandated environmental protection measures. If carbon emission reductions are mandated

by law, this will affect wholesale power markets dramatically. Preventive measures could by

pre-tested using computational experiments.

8. Extension of AMES to include the existence of multiple ISO-managed wholesale power markets.

This would permit the study and evaluation of seaming issues for the seven current ISO-managed

energy regions in the U.S., including their actual and potential interactions and connections at

the national level. This extended version of AMES could facilitate a high-level understanding of

current U.S. wholesale power market operations in the short term, as well as inform the process of

investment in generation and transmission network expansion in the longer term under alternative

scenarios for future energy policies.
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APPENDIX A. AMES WHOLESALE POWER MARKET TEST BED

A.1 Introduction

In an April 2003 white paper FERC (2003), the U.S. Federal Energy Regulatory Commission

(FERC) proposed a new market design for U.S. wholesale power markets. Over 50% of U.S. generating

capacity is now operating within the footprint of a wholesale power market restructured in compliance

with the basic provisions of FERC’s design.

These restructured wholesale power markets are complex, involving physical constraints, compli-

cated market protocols, and behavioral dispositions of human participants. Moreover, time series are

short due to the relative recency of the restructuring efforts, and the data that are available are often

released only with a delay and only in partially masked form. Consequently, it is difficult to model and

study these markets using standard analytical and statistical tools.

An additional complicating factor is that many economists are not familiar with transmission grid

aspects of power systems, so they often focus on highly simplified two-bus or three-bus systems. Con-

versely, many power engineers are not familiar with basic economic market concepts, let alone the

complicated design of restructured wholesale power markets. Modeling efforts by interdisciplinary

teams capable of addressing both engineering and economic concerns would therefore be highly desir-

able.

In response to these concerns, an interdisciplinary group of researchers at Iowa State University has

undertaken an OSS development of a wholesale power market test bed, referred to as AMES (Agent-

based Modeling of Electricity Systems). The AMES test bed permits the systematic experimental study

of strategic trading behaviors within restructured wholesale power markets operating over realistically

rendered AC transmission grids. In addition, AMES facilitates augmentation of empirical input data

with simulated input data to permit the study of a broader array of scenarios.

From the beginning, AMES was designed for research and teaching purposes rather than for commercial-
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grade application. AMES is entirely developed in the widely used Java programming language in order

to facilitate readability and use. AMES is entirely OSS, combining together a collection of basic OSS

modules for learning representation, optimal power flow solution, graphic display, and other functions.

The modular and extensible OSS architecture of AMES permits users to modify and extend the code

with relative ease to suit their special needs.

The first version of AMES was released as OSS at the IEEE Power and Energy Society General

Meeting (PES GM) in 2007, and a substantially expanded second version was released as OSS at the

IEEE PES GM in 2008. Downloads, manuals, and tutorial information for all AMES version releases

to date are accessible at the AMES homepage Tesfatsion, L. (2009d). AMES is also available for

downloading at the software site of the IEEE Task force on Open Source Software for Power Systems;

see IEEE OSS (2009).

The release of AMES as OSS is intended to encourage the cumulative development of this test

bed by multiple researchers in directions appropriate for their specific needs. It is also intended to

encourage continual dialog with market stakeholders and regulators leading to successive refinements

and improvements of the test bed.

A.2 Key Features

The latest version release AMES(V2.05) of the AMES Market Package incorporates, in simplified

form, core features of FERC’s proposed wholesale power market design, a detailed description can be

found in Chapter 3.

As seen in Fig. A.1, AMES has a graphical user interface (GUI) with separate screens for carrying

out the following functions: (a) creation, modification, analysis, and storage of case studies; (b) initial-

ization and editing of the structural attributes of the transmission grid; (c) initialization and editing of

the structural attributes of LSEs and GenCos; (d) specification of learning parameters for GenCos; (e)

specification of simulation controls (e.g., the simulation stopping rule); and (f) customization of table

and chart output displays.

The user can control the length of each simulation run by choosing to set (or not) any combination

of the following five stopping rules:
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Figure A.1 AMES Graphical User Interface (GUI)

• Stop when a specified maximum day is reached.

• Stop when each GenCo is choosing a single supply offer with a probability that exceeds a user-

specified threshold probability.

• Stop when the probability distribution used by each GenCo to select its supply offers has stabi-

lized to within a user-specified threshold for a user-specified number of days.

• Stop when the supply offer selected by each GenCo has stabilized to within a user-specified

threshold for a user-specified number of days.

• Stop when the net earnings of each GenCo have stabilized to within a user-specified threshold

for a user-specified number of days.

When multiple stopping rules are flagged, the simulation run terminates as soon as any one of the

flagged stopping rules is satisfied.

A.3 Running AMES Simulation Experiments

Detailed instructions for developing and running general AMES simulations in either single-run or

batch-run mode can be found in the set-up information file included with the AMES software down-



www.manaraa.com

129

load; see Tesfatsion, L. (2009d). Here we briefly outline the general sequence of actions for a single

simulation run, as follows:

1: To load one of the pre-set test cases (e.g., the 5-Bus Test Case), use the “Case→ Load Test Case

→ 5-Bus Test Case” command sequence on the GUI menu. Alternatively, to create a new case,

use the “Case→ New Case” command sequence on the GUI menu.

Figure A.2 AMES GUI: Setting screen for LSE fixed demand bids and price-sen-
sitive demand function parameters for each hour

2: For a pre-set test case, either use the default parameter settings (including the default random seed

value) or change some or all of these default settings to other admissible values. To change the

default parameter settings, or to set parameters for a new case, use the “Case→ Case Parameters”

command sequence on the GUI menu to access a sequence of setting screens for grid, LSE,

GenCo, and simulation control parameters; see, e.g., fig. A.2. Inadmissible parameter settings

trigger explanatory error messages.

3: To run the case, click the “Start” button on the GUI toolbar or use the “Command → Start”

command sequence from the GUI menu.
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4: View a customizable output file in the AMES DATA directory using various programs (e.g.,

Microsoft Excel, Wordpad).

5: Alternatively, view output data in either table or chart form using either the “View → Output

Tables” or the “View→ Output Charts” command sequence from the GUI menu.

The AMES GUI tables and charts display six types of output for each run: GenCo commitments;

GenCo profits and net earnings; cleared LSE price-sensitive demand; LSE net earnings corresponding

to cleared price-sensitive demand; LMPs; and total supply and demand curves. This output is further

subdivided into “benchmark” and “learning” portions as follows: (i) initially generated output for a

no-learning benchmark case in which the supply offers that the GenCos report to the ISO reflect their

true cost and capacity attributes; and (ii) subsequently generated output for a learning case in which the

GenCos attempt to learn over time which supply offers to report to the ISO to increase their net earnings.

The benchmark-case output provides a benchmark of comparison for the learning-case output.

A.4 Development Tools Used

As seen in Fig. A.3, various OSS tools were used in the development of AMES(V2.05). A more

careful description of these tools is given below.

Figure A.3 OSS tools used in the development of AMES(V2.05)

• (1) Java Development Kit (JDK): Version 6 update 1 (6u1) of the Java SE Development Kit

Java (2009) was used to develop the basic AMES code.
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• (2) Java Integrated Development Environment (IDE): The NetBeans IDE 6.0 NetBeans (2009)

was used in combination with (1) to develop AMES as a standard Java package. The NetBeans

IDE is a powerful open-source cross-platform tool for Java programming.

• (3) Java Chart Library: JFreeChart JFreeChart (2009) is an OSS chart library that is used to

create different kinds of charts in AMES.

• (4) Java Agent-Based Toolkit: The OSS agent-based toolkit Repast J RepastJ (2009) is used to

control agent activities in AMES.

• (5) Java DC-OPF Solver (DCOPFJ): DCOPFJ, a free open-source solver for DC optimal power

flow problems developed by Sun and Tesfatsion (Sun, J. and Tesfatsion, L. (2007b)), is used by

the AMES ISO to solve hourly bid/offer-based DC-OPF problems.

• (6) Java Reinforcement Learning Module (JReLM): JReLM, an open-source Java learning mod-

ule developed by Charles Gieseler Gieseler, C. (2005), is used to control agent learning behaviors

in AMES.

• (7) Colt Libraries for Java High-Performance Computing: Colt Colt (2009) provides a set of

open-source libraries for high-performance scientific and technical computing in Java.

• (8) Subversion for Version Management: Subversion Subversion (2009) is an open source ver-

sion control system facilitating simultaneous software development by multiple project members.

A.5 Licensing and Release

The AMES Wholesale Power Market Test Bed is licensed by the copyright holders (Hongyan Li,

Junjie Sun, and Leigh Tesfatsion) as free open-source software under the terms of the GNU General

Public License (GPL) GNU (2009). Anyone who is interested is allowed to view, modify, and/or

improve upon the code for AMES, but any software generated using all or part of this code must be

released as free open-source software in turn.

The latest version of AMES can be downloaded in a zip file from the AMES homepage Li, H. and

Tesfatsion, L. (2009a). This zip file includes three help files and three file directories, as follows:
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• (1) AMESMarketReadMe.htm: This help file is a slightly modified version of the AMES home-

page Li, H. and Tesfatsion, L. (2009a). It provides useful information about AMES, including

an overview of capabilities, pointers to current and previous versions of AMES for download,

and annotated pointers to project papers and publications making use of AMES.

• (2) AMESMarketProjectSetupInfo.pdf: This help file is a basic manual for AMES. Included are

instructions for setting up AMES as a Java project, loading and viewing AMES test cases, devel-

oping new AMES test cases, modifying the AMES source code, and running AMES experiments

in either individual or batch mode.

• (3) AMESVersionReleaseHistory.htm: This help file provides annotated pointers to all released

AMES versions.

• (4) src directory: This directory includes all of the AMES source code.

• (5) lib directory: This directory includes all special OSS libraries used to implement AMES, e.g.,

an executable Java archive (“jar”) file Colt.jar for Colt Colt (2009).

• (6) DATA directory: This directory provides sample data input files for 5-bus and 30-bus test

cases that can be used as templates for the development of new AMES test cases. It also provides

a sample batch-mode file that can be used as a template for setting up AMES experiments so that

multiple runs can be implemented automatically in one batch.

A.6 Applications to Date

The AMES test bed has been used to conduct systematic experimental studies focusing on various

performance aspects of restructured wholesale power markets operating over AC transmission grids

when profit-seeking GenCos have learning capabilities allowing them to strategically evolve their sup-

ply offers over time (Sun, J. and Tesfatsion, L. (2007a)-Li, H. , Sun, J. and Tesfatsion, L. (2009)).

Basically, AMES is used by two categories:

(1) E3 group members in Iowa State University. Currently, a few PhD students build their research

based on AMES, for example, two PhD students are studying short time LMP forecasting in day-ahead
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markets; one PhD student is studying Financial Transmission Rights (FTR), one PhD student is seam-

ing AMES with retail power markets and one PhD student is studying financial and operational risk

management for restructured wholesale power markets, etc. For these PhD students, AMES provide

platform to carry their research work.

(2) People who are interested in AMES from all over the world. The AMES software package

has been downloaded from the AMES homepage Li, H. and Tesfatsion, L. (2009a) by numerous re-

searchers worldwide, and several research groups have indicated through communications with AMES

team members that the AMES OSS has helped them in the design of their own project software. For

example, research groups in Germany and Australia have used aspects of the AMES OSS to build

agent-based test beds for the study of C02 emission control systems for power markets, and a research

group in China has developed an AC OPF module for possible inclusion in a future version of AMES.
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Table A.1 Admissible Exogenous Variables and Functional Forms

Variable Description Admissibility Restrictions
K Total number of transmission grid buses K > 0

N Total number of physically distinct network branches N > 0

J Total number of LSEs J > 0

I Total number of GenCos I > 0

Jk Set of LSEs located at bus k Card(∪K
k=1 Jk) = J

Ik Set of GenCos located at bus k Card(∪K
k=1 Ik) = I

So Base apparent power (in three-phase MVA) So ≥ 1
Vo Base voltage (in line-to-line kV) Vo > 0
Vk Voltage magnitude (kV) at bus k Vk = Vo

km Branch connecting buses k and m (if one exists) k 6=m

BR Set of all physically distinct branches km, k < m BR 6= ∅
xkm Reactance (ohm) for branch km xkm=xmk > 0, km in BR
Bkm [1/xkm] for branch km Bkm=Bmk > 0, km ∈ BR
PU

km Thermal limit (MW) for real power flow on km PU
km > 0, km ∈ BR

δ1 Voltage angle (radians) at specified angle reference bus 1 δ1 = 0

µ Penalty weight ($/h·radian) for voltage angle differences in DC-OPF objective function µ > 0

Rj Ratio of max potential price-sensitive demand to max potential total demand for LSE j 0 ≤ Rj ≤ 1
BPF

Lj (H) Benchmark-case hour-H fixed demand (MW) for LSE j BPF
Lj (H) > 0

pF
Lj (H) Actual hour-H fixed demand (MW) for LSE j pF

Lj (H) = [1-Rj ]*BPF
Lj (H)

SLMaxj (H) Hour-H upper limit for LSE j’s price-sensitive demand (MW) SLMaxj (H) = Rj*BPF
Lj (H)

MPTDj (H) Hour-H maximum potential total demand (MW) for LSE j MPTDj (H)= [pF
Lj (H)+SLMaxj (H)]

cj (H),dj (H) Hour-H demand coefficients ($/MWh,$/MW2h) for LSE j cj (H),dj (H) > 0
DjH (p) DjH (p) = cj (H) - 2dj (H)p = LSE j’s hour-H price-sensitive demand fct for real power p DjH (SLMaxj (H)) ≥ 0
SCosti Hourly pro-rated sunk cost ($/h) for GenCo i SCosti ≥ 0
CapL

i Lower real power operating capacity limit (MW) for GenCo i CapL
i ≥ 0

CapU
i Upper real power operating capacity limit (MW) for GenCo i CapU

i > 0
ai,bi Cost coefficients ($/MWh,$/MW2h) for GenCo i bi > 0
MCi(p) MCi(p) = ai+2bip = GenCo i’s true MC function for real power p MCi(CapL

i ) > 0
InitMoneyi Initial money holdings ($) of GenCo i InitMoneyi > 0
Mi Cardinality of the action domain ADi for GenCo i Mi ≥ 1

M1i,M2i,M3i Integer-valued density-control parameters for ADi construction
∏3

j=1
Mji = Mi

RIMaxL
i Ordinate range-index parameter for ADi construction RIMaxL

i ∈ [0, 1)

RIMaxU
i Slope range-index parameter for ADi construction RIMaxU

i ∈ [0,1)
RIMinC

i Capacity-withholding range-index parameter for ADi construction RIMinC
i ∈ (0, 1]

SSi Slope-start control parameter for ADi construction SSi > 0
MaxDNEi Estimate of maximum possible daily net earnings ($/D) for GenCo i from ADi MaxDNEi > 0

qi(1) Initial propensity ($/D) for GenCo i (learning) qi(1) ∝MaxDNEi

Ti Temperature parameter for GenCo i (learning) Ti > 0

ρi Recency parameter for GenCo i (learning) 0 ≤ ρi ≤ 1
ei Experimentation parameter for GenCo i (learning) 0 ≤ ei < 1
PCap Price cap ($/MWh) imposed on GenCo supply offers by ISO PCap > 0
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Table A.2 Endogenous Variables

Variable Description
pS

Lj Real-power price-sensitive demand (MW) by LSE j=1,...,J
aR
i ,bR

i Cost coefficients ($/MWh,$/MW2h) reported by GenCo i=1,...,I
CapRU

i Real-power upper operating capacity limit (MW) reported by GenCo i=1,...,I
pGi Real-power generation (MW) supplied by GenCo i=1,...,I
TGS Total gross surpus ($/h) of LSEs corresponding to their price-sensitive demands
TVCR Reported total avoidable cost ($/h) of GenCos
TNSR Reported total net surplus (TGS - TVCR)
TNCR Reported total net avoidable cost (-1 × TNSR)
δk Voltage angle (in radians) at bus k = 2,...,K
Pkm Real power (MW) flowing in branch km ∈ BR
LMPk Locational marginal price ($/MWh) at bus k=1,...,K
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APPENDIX B. SYSTEM DATA FOR 5-BUS TEST SYSTEM

Table B.1 Numerical input specifications for the benchmark dynamic 5-bus test
case: No GenCo learning, 100% fixed demand, and no supply-offer
price cap

Base Valuesa

So Vo

100 10

Kb µc

5 0.05
Branch
From To MaxCapd xe

1 2 250.0 0.0281
1 4 150.0 0.0304
1 5 400.0 0.0064
2 3 350.0 0.0108
3 4 240.0 0.0297
4 5 240.0 0.0297

GenCo i at bus SCosti ai bi CapL
i CapU

i InitMoneyi

1 1 0.00 14.0 0.005 0.0 110.0 $1M
2 1 0.00 15.0 0.006 0.0 100.0 $1M
3 3 0.00 25.0 0.010 0.0 520.0 $1M
4 4 0.00 30.0 0.012 0.0 200.0 $1M
5 5 0.00 10.0 0.007 0.0 600.0 $1M

LSE j at bus BPF (00)f BPF (01) BPF (02) BPF (03) BPF (04) BPF (05) BPF (06) BPF (07)
1 2 350.00 322.93 305.04 296.02 287.16 291.59 296.02 314.07
2 3 300.00 276.80 261.47 253.73 246.13 249.93 253.73 269.20
3 4 250.00 230.66 217.89 211.44 205.11 208.28 211.44 224.33

LSE j at bus BPF (08) BPF (09) BPF (10) BPF (11) BPF (12) BPF (13) BPF (14) BPF (15)
1 2 358.86 394.80 403.82 408.25 403.82 394.80 390.37 390.37
2 3 307.60 338.40 346.13 349.93 346.13 338.40 334.60 334.60
3 4 256.33 282.00 288.44 291.61 288.44 282.00 278.83 278.83

LSE j at bus BPF (16) BPF (17) BPF (18) BPF (19) BPF (20) BPF (21) BPF (22) BPF (23)
1 2 408.25 448.62 430.73 426.14 421.71 412.69 390.37 363.46
2 3 349.93 384.53 369.20 365.26 361.47 353.73 334.60 311.53
3 4 291.61 320.44 307.67 304.39 301.22 294.78 278.83 259.61

aFor simplicity, the base apparent power So (MVA) and base voltage Vo (kV) are chosen so base impedance Zo satisfies
Zo = V2

o/So = 1.
bTotal number of buses
cPenalty weight µ ($/h·radian) for voltage angle differences in DC-OPF objective function
dUpper limit PU

km (MW) on the magnitude of real power flow in branch km
eReactance xkm (ohm) for branch km
fBPF (H) for LSE j: The benchmark-case fixed demand (MW) for LSE j for each hour H from 00 to 23
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Table B.2 Additional numerical input specifications for the benchmark dynamic
5-bus test case extended to include GenCo learning: Action domain pa-
rameter values, learning parameter values, and random seeds for mul-
tiple runs

Action Domain Parameters

GenCo i M1i M2i M3i RIMaxL
i RIMaxU

i RIMinC
i SSi

1 10 10 1 0.75 0.75 1.00 0.001
2 10 10 1 0.75 0.75 1.00 0.001
3 10 10 1 0.75 0.75 1.00 0.001
4 10 10 1 0.75 0.75 1.00 0.001
5 10 10 1 0.75 0.75 1.00 0.001

Learning Parameters

GenCo i ri ei MaxDNEi α = [qi(1)/MaxDNEi] β = [qi(1)/Ti]
1 0.04 0.96 552,949.06 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)
2 0.04 0.96 538,560.96 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)
3 0.04 0.96 4,615,108.99 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)
4 0.04 0.96 2,148,481.92 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)
5 0.04 0.96 2,099,525.76 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)

Random Seeds for All 30 Runs

RunID InitialSeed RunID InitialSeed RunID InitialSeed
01 2096966936 11 736815417 21 1831032783
02 2131965672 12 132292439 22 493464018
03 1235967177 13 207226519 23 930068517
04 511529502 14 1522886012 24 856336506
05 1063330821 15 2000909491 25 1205573239
06 870295371 16 808958575 26 794414294
07 1815184757 17 1150478587 27 1183491260
08 1880683622 18 173232596 28 1846539650
09 122209384 19 999975840 29 437363834
10 220366820 20 1616038132 30 2013640491



www.manaraa.com

138

Table B.3 Additional numerical specifications for the benchmark dynamic 5-bus
test case extended to include LSE price-sensitive demand functions.
The column for each LSE j gives the ordinate and slope values (c,d)
for LSE j for each hour.

Hour LSE 1 LSE 2 LSE 3
00 (35.50, 0.40) (31.65, 0.40) (21.05, 0.40)
01 (33.95, 0.40) (30.39, 0.40) (20.60, 0.40)
02 (32.92, 0.40) (29.55, 0.40) (20.30, 0.40)
03 (32.40, 0.40) (29.13, 0.40) (20.15, 0.40)
04 (31.89, 0.40) (28.72, 0.40) (20.00, 0.40)
05 (32.15, 0.40) (28.93, 0.40) (20.07, 0.40)
06 (32.40, 0.40) (29.13, 0.40) (20.15, 0.40)
07 (33.44, 0.40) (29.97, 0.40) (20.45, 0.40)
08 (36.01, 0.40) (32.06, 0.40) (21.20, 0.40)
09 (38.08, 0.40) (33.74, 0.40) (21.81, 0.40)
10 (38.60, 0.40) (34.16, 0.40) (21.96, 0.40)
11 (38.85, 0.40) (34.37, 0.40) (22.03, 0.40)
12 (38.60, 0.40) (34.16, 0.40) (21.96, 0.40)
13 (38.08, 0.40) (33.74, 0.40) (21.81, 0.40)
14 (37.82, 0.40) (33.53, 0.40) (21.73, 0.40)
15 (37.82, 0.40) (33.53, 0.40) (21.73, 0.40)
16 (38.85, 0.40) (34.37, 0.40) (22.03, 0.40)
17 (78.24, 0.40) (66.07, 0.40) (32.61, 0.40)
18 (45.55, 0.40) (39.78, 0.40) (23.90, 0.40)
19 (39.88, 0.40) (35.20, 0.40) (22.33, 0.40)
20 (39.63, 0.40) (35.00, 0.40) (22.26, 0.40)
21 (39.11, 0.40) (34.57, 0.40) (22.11, 0.40)
22 (37.82, 0.40) (33.53, 0.40) (21.73, 0.40)
23 (36.28, 0.40) (32.28, 0.40) (21.28, 0.40)
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APPENDIX C. SYSTEM DATA FOR 30-BUS TEST SYSTEM

Table C.1 Numerical input specifications for the benchmark dynamic 30-bus test
case (branch and GenCo cost data)

From To MaxCap x
2 6 30 0.1763
4 6 30 0.0414
4 12 65 0.2560
5 7 30 0.1160
6 7 30 0.0820
6 8 30 0.0420
6 9 30 0.2080
6 10 30 0.5560
6 28 30 0.0599
8 28 30 0.2000
9 10 30 0.1100
9 11 30 0.2080
10 17 32 0.0845
10 20 32 0.2090
10 21 30 0.0749
10 22 30 0.1499
12 13 65 0.1400
12 14 32 0.2559
12 15 32 0.1304
12 16 32 0.1987
14 15 16 0.1997
15 18 16 0.2185
15 23 16 0.2020
16 17 16 0.1923
18 19 16 0.1292
19 20 32 0.0680
21 22 30 0.0236
22 24 30 0.1790
23 24 16 0.2700
24 25 30 0.3292
25 26 30 0.3800
25 27 30 0.2087
27 28 30 0.3960
27 29 30 0.4153
27 30 30 0.6027
29 30 30 0.4533

GenCo i at bus SCosti ai bi CapL
i CapU

i InitMoneyi

1 1 0.00 10.6940 0.0046 0.00 100.0 $1M
2 2 0.00 18.1000 0.0061 0.00 80.0 $1M
3 5 0.00 13.3270 0.0087 0.00 50.0 $1M
4 8 0.00 13.3530 0.0089 0.00 50.0 $1M
5 11 0.00 37.8890 0.0143 0.00 20.0 $1M
6 13 0.00 19.3270 0.0103 0.00 70.0 $1M
7 15 0.00 18.3000 0.0071 0.00 60.0 $1M
8 24 0.00 39.8890 0.0163 0.00 20.0 $1M
9 30 0.00 49.3270 0.0243 0.00 20.0 $1M
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Table C.2 Numerical input specifications for the benchmark dynamic 30-bus test
case (100% fixed demand data)

LSE j at bus BPF (00) BPF (01) BPF (02) BPF (03) BPF (04) BPF (05) BPF (06) BPF (07)
1 2 16.93 15.62 14.76 14.32 13.89 14.11 14.32 15.19
2 3 1.87 1.73 1.63 1.58 1.54 1.56 1.58 1.68
3 4 52.74 48.66 45.97 44.60 43.27 43.94 44.60 47.32
4 5 26.68 24.62 23.26 22.57 21.89 22.23 22.57 23.94
5 7 17.79 16.41 15.50 15.04 14.59 14.82 15.04 15.96
6 8 23.41 21.59 20.40 19.79 19.20 19.50 19.79 21.00
7 10 4.53 4.17 3.94 3.83 3.71 3.77 3.83 4.06
8 12 8.74 8.06 7.62 7.39 7.17 7.28 7.39 7.84
9 14 4.84 4.46 4.22 4.09 3.97 4.03 4.09 4.34
10 15 6.40 5.90 5.58 5.41 5.25 5.33 5.41 5.74
11 16 2.73 2.52 2.38 2.31 2.24 2.28 2.31 2.45
12 17 7.02 6.48 6.12 5.94 5.76 5.85 5.94 6.30
13 18 2.50 2.30 2.18 2.11 2.05 2.08 2.11 2.24
14 19 7.41 6.84 6.46 6.27 6.08 6.18 6.27 6.65
15 20 1.72 1.58 1.50 1.45 1.41 1.43 1.45 1.54
16 21 13.65 12.60 11.90 11.55 11.20 11.38 11.55 12.25
17 23 2.50 2.30 2.18 2.11 2.05 2.08 2.11 2.24
18 24 6.79 6.26 5.92 5.74 5.57 5.66 5.74 6.09
19 26 2.73 2.52 2.38 2.31 2.24 2.28 2.31 2.45
20 29 1.87 1.73 1.63 1.58 1.54 1.56 1.58 1.68
21 30 8.27 7.63 7.21 6.99 6.79 6.89 6.99 7.42

LSE j at bus BPF (08) BPF (09) BPF (10) BPF (11) BPF (12) BPF (13) BPF (14) BPF (15)
1 2 17.36 19.10 19.53 19.75 19.53 19.10 18.88 18.88
2 3 1.92 2.11 2.16 2.18 2.16 2.11 2.09 2.09
3 4 54.08 59.49 60.84 61.52 60.84 59.49 58.83 58.83
4 5 27.36 30.10 30.78 31.12 30.78 30.10 29.76 29.76
5 7 18.24 20.06 20.52 20.75 20.52 20.06 19.84 19.84
6 8 24.00 26.40 27.00 27.30 27.00 26.40 26.11 26.11
7 10 4.64 5.10 5.22 5.28 5.22 5.10 5.05 5.05
8 12 8.96 9.86 10.08 10.19 10.08 9.86 9.75 9.75
9 14 4.96 5.46 5.58 5.64 5.58 5.46 5.40 5.40
10 15 6.56 7.22 7.38 7.46 7.38 7.22 7.14 7.14
11 16 2.80 3.08 3.15 3.19 3.15 3.08 3.05 3.05
12 17 7.20 7.92 8.10 8.19 8.10 7.92 7.83 7.83
13 18 2.56 2.82 2.88 2.91 2.88 2.82 2.78 2.78
14 19 7.60 8.36 8.55 8.65 8.55 8.36 8.27 8.27
15 20 1.76 1.94 1.98 2.00 1.98 1.94 1.91 1.91
16 21 14.00 15.40 15.75 15.93 15.75 15.40 15.23 15.23
17 23 2.56 2.82 2.88 2.91 2.88 2.82 2.78 2.78
18 24 6.96 7.66 7.83 7.92 7.83 7.66 7.57 7.57
19 26 2.80 3.08 3.15 3.19 3.15 3.08 3.05 3.05
20 29 1.92 2.11 2.16 2.18 2.16 2.11 2.09 2.09
21 30 8.48 9.33 9.54 9.65 9.54 9.33 9.22 9.22

LSE j at bus BPF (16) BPF (17) BPF (18) BPF (19) BPF (20) BPF (21) BPF (22) BPF (23)
1 2 19.75 21.70 20.83 20.62 20.40 19.96 18.88 17.58
2 3 2.18 2.40 2.30 2.28 2.26 2.21 2.09 1.94
3 4 61.52 67.60 64.90 64.22 63.54 62.19 58.81 54.76
4 5 31.12 34.20 32.83 32.49 32.15 31.46 29.75 27.70
5 7 20.75 22.80 21.89 21.66 21.43 20.98 19.84 18.47
6 8 27.30 30.00 28.80 28.50 28.20 27.60 26.10 24.30
7 10 5.28 5.80 5.57 5.51 5.45 5.34 5.05 4.70
8 12 10.19 11.20 10.75 10.64 10.53 10.30 9.74 9.07
9 14 5.64 6.20 5.95 5.89 5.83 5.70 5.39 5.02
10 15 7.46 8.20 7.87 7.79 7.71 7.54 7.13 6.64
11 16 3.19 3.50 3.36 3.33 3.29 3.22 3.05 2.84
12 17 8.19 9.00 8.64 8.55 8.46 8.28 7.83 7.29
13 18 2.91 3.20 3.07 3.04 3.01 2.94 2.78 2.59
14 19 8.65 9.50 9.12 9.03 8.93 8.74 8.27 7.70
15 20 2.00 2.20 2.11 2.09 2.07 2.02 1.91 1.78
16 21 15.93 17.50 16.80 16.63 16.45 16.10 15.23 14.18
17 23 2.91 3.20 3.07 3.04 3.01 2.94 2.78 2.59
18 24 7.92 8.70 8.35 8.27 8.18 8.00 7.57 7.05
19 26 3.19 3.50 3.36 3.33 3.29 3.22 3.05 2.84
20 29 2.18 2.40 2.30 2.28 2.26 2.21 2.09 1.94
21 30 9.65 10.60 10.18 10.07 9.96 9.75 9.22 8.59
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Table C.3 Additional numerical input specifications for the benchmark dynamic
30-bus test case extended to include GenCo learning: Action domain
parameter values, learning parameter values, and random seeds for
multiple runs

Action Domain Parameters

GenCo i M1i M2i M3i RIMaxL
i RIMaxU

i RIMinC
i SSi

1 10 10 1 0.75 0.75 1.00 0.001
2 10 10 1 0.75 0.75 1.00 0.001
3 10 10 1 0.75 0.75 1.00 0.001
4 10 10 1 0.75 0.75 1.00 0.001
5 10 10 1 0.75 0.75 1.00 0.001
6 10 10 1 0.75 0.75 1.00 0.001
7 10 10 1 0.75 0.75 1.00 0.001
8 10 10 1 0.75 0.75 1.00 0.001
9 10 10 1 0.75 0.75 1.00 0.001

Learning Parameters

GenCo i ri ei MaxDNEi α = [qi(1)/MaxDNEi] β = [qi(1)/Ti]
1 0.04 0.96 383889.60 1 100
2 0.04 0.96 520350.72 1 100
3 0.04 0.96 239368.80 1 100
4 0.04 0.96 239824.80 1 100
5 0.04 0.96 272665.44 1 100
6 0.04 0.96 485835.84 1 100
7 0.04 0.96 394672.32 1 100
8 0.04 0.96 287046.24 1 100
9 0.04 0.96 354923.04 1 100

Random Seeds for All 30 Runs

RunID InitialSeed RunID InitialSeed RunID InitialSeed
01 2096966936 11 736815417 21 1831032783
02 2131965672 12 132292439 22 493464018
03 1235967177 13 207226519 23 930068517
04 511529502 14 1522886012 24 856336506
05 1063330821 15 2000909491 25 1205573239
06 870295371 16 808958575 26 794414294
07 1815184757 17 1150478587 27 1183491260
08 1880683622 18 173232596 28 1846539650
09 122209384 19 999975840 29 437363834
10 220366820 20 1616038132 30 2013640491
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Sensfuß, F. , Ragwitz, M. , Genoese, M. and Möst, D. (2007). Agent-Based Simulation of Electricity

Markets: A Literature Review. Working Paper Sustainability and Innovation, Fraunhofer Institute

Systems and Innovation Research

Shahidehpour, M. , Yamin, H. and Li, Z. (2002). Market Operations in Electric Power Systems. New

York, NY: IEEE/Wiley-Interscience, John Wiley & Sons, Inc.

Somani, A. and Tesfatsion, L. (2008). An Agent-Based Test Bed Study of Wholesale Power Market

Performance Measures. IEEE Computational Intelligence Magazine, 3,(4) 56–

72. Working paper available: http://www.econ.iastate.edu/tesfatsi/

AMESPerformanceMeasures.ASLT.IEEECIM2008.pdf

Sourceforge (2009). Sourceforge.Net: Open Source Software, a repository of OSS, http://

sourceforge.net/

Streiffert, D. , Philbrick, R. and Ott, A. (2005). A Mixed Integer Programming Solution for Market

Clearing and Reliability Analysis. IEEE Proceedings, Power and Energy Society General Meeting,

3, 2724–2731.

Subversion (2009). Subversion: An open source version control system, http://subversion.

tigris.org/

Sueyoshi, T. and Tadiparthi, G. R. (2008). Wholesale power price dynamics under transmission line

limits: A use of agent-based simulator. IEEE Transactions on Systems, Man, and Cybernetics, 38(2),

229–241.

http://www.econ.iastate.edu/tesfatsi/AMESPerformanceMeasures.ASLT.IEEECIM2008.pdf
http://www.econ.iastate.edu/tesfatsi/AMESPerformanceMeasures.ASLT.IEEECIM2008.pdf
http://sourceforge.net/
http://sourceforge.net/
http://subversion.tigris.org/ 
http://subversion.tigris.org/ 


www.manaraa.com

148

Sun, J. and Tesfatsion, L. (2008). DC-OPF Formulation with Price-Sensitive Demand Bids. Work-

ing Paper, ISU Economics Department. Available: www.econ.iastate.edu/tesfatsi/

DC-OPF.PriceSensitiveDemandBids.pdf

Sun, J. and Tesfatsion, L. (2007a). Dynamic testing of wholesale power market designs: An open-

source agent-based framework. Computational Economics, 30, 291–327. Working paper available:

www.econ.iastate.edu/tesfatsi/DynTestAMES.JSLT.pdf

Sun, J. and Tesfatsion, L. (2007b). DC optimal power flow formulation and solution using QuadProgJ.

IEEE Proceedings, Power and Energy Society General Meeting, Tampa, Florida. Working paper

available: www.econ.iastate.edu/tesfatsi/DC-OPF.JSLT.pdf

Sutton, R. S. and Barto, A. G. (2000). Reinforcement Learning: An Introduction, Third Printing, The

MIT Press, Cambridge, MA.

Tan, C.S. , Liu, Y. and Lo, K.L. (2008). A More Transparent Way of Financial Settlement for Conges-

tion Cost in Electricity Markets. DRPT2008, Nanjing, China.

Tellidou, A. and Bakirtzis, A. (2007). Agent-Based Analysis of Capacity Withholding and Tacit Col-

lusion in Electricity Markets. IEEE Transactions on Power Systems, 22,(4) 1735–1742.

Tesfatsion, L. (2009a). Auction basics for restructured wholesale power markets: Objectives and pric-

ing rules. IEEE Proceedings, Power and Energy Society General Meeting, Calgary, Alberta, CA.

www.econ.iastate.edu/tesfatsi/AuctionBasics.IEEEPES2009.LT.pdf

Tesfatsion, L. (2009b). Agent-Based Computational Economics, hosted by the Economics Department,

Iowa State University. Available: www.econ.iastate.edu/tesfatsi/ace.htm

Tesfatsion, L. (2009c). Agent-Based Computational Economics Research on Restructured Electric-

ity Markets, hosted by the Economics Department, Iowa State University. Available: www.econ.

iastate.edu/tesfatsi/aelect.htm

Tesfatsion, L. (2009d). AMES Wholesale Power Market Test Bed Homepage, hosted by the Economics

Department, Iowa State University, http://www.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

www.econ.iastate.edu/tesfatsi/DC-OPF.PriceSensitiveDemandBids.pdf
www.econ.iastate.edu/tesfatsi/DC-OPF.PriceSensitiveDemandBids.pdf
www.econ.iastate.edu/tesfatsi/DynTestAMES.JSLT.pdf
www.econ.iastate.edu/tesfatsi/DC-OPF.JSLT.pdf
www.econ.iastate.edu/tesfatsi/AuctionBasics.IEEEPES2009.LT.pdf
www.econ.iastate.edu/tesfatsi/ace.htm
www.econ.iastate.edu/tesfatsi/aelect.htm
www.econ.iastate.edu/tesfatsi/aelect.htm


www.manaraa.com

149

Tesfatsion, L. and Judd, K. L., eds. (2006). Handbook of Computational Economics, Vol. 2: Agent-

Based Computational Economics, Handbooks in Economics Series, Amsterdam, the Netherlands:

North-Holland/ Elsevier.

Walawalkar, R. , Blumsack, S. , Apt, J. and Fernands, S. (2008). An economic welfare analysis of

demand response in the PJM electricity market. Energy Policy, 26, 3692–3702.

Watkins, C. (1989). Learning from Delayed Rewards. Ph.D. Thesis, Cambridge University, UK.

Weidlich, A. and Veit, D. (2008). A Critical Survey of Agent-Based Wholesale Electricity Market

Models. Energy Economics

Zhou, Z. , Chan, W. and Chow, J. (2007). Agent-based simulation of electricity markets: a survey of

tools. Artificial Intelligence Review 28(4), 305–342.


	2009
	Dynamic performance of restructured wholesale power markets with learning generation companies: an agent-based test bed study
	Hongyan Li
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 Research Motivation and Background
	1.2 Organization of the Dissertation

	2. LITERATURE REVIEW
	2.1 Restructured Wholesale Power Markets Background
	2.2 Agent-Based Computational Modeling
	2.3 Learning Methods
	2.4 Agent-based Electricity Market Simulation
	2.5 Open-Source Software

	3. AGENT-BASED WHOLESALE POWER MARKET TEST BED CONSTRUCTION
	3.1 Independent System Operator Agent Model
	3.1.1 Introduction
	3.1.2 ISO Activities
	3.1.3 ISO Net Surplus
	3.1.4 Market Performance Measures

	3.2 GenCo Agent Model
	3.2.1 Introduction
	3.2.2 GenCo Supply Offers
	3.2.3 GenCo Supply Offer Price Cap
	3.2.4 GenCo Costs, Profits, and Net Earnings
	3.2.5 GenCo Learning
	3.2.6 GenCo Action Domain Construction

	3.3 LSE Agent Model 
	3.3.1 Introduction
	3.3.2 LSE Demand Bids
	3.3.3 Relative Demand-Bid Price Sensitivity Measure
	3.3.4 LSE Net Surplus

	3.4 Day-Ahead Market Agent Model
	3.4.1 Introduction
	3.4.2 Day-Ahead Market Activities
	3.4.3 Day-Ahead Market Clearing Mechanism

	3.5 Real-Time Market Agent Model

	4. KEY FINDINGS OF LMP SEPARATION AND VOLATILITY STUDY
	4.1 Introduction
	4.2 Experimental Design
	4.3 Without GenCo Learning Benchmark Case
	4.4 GenCo Learning Calibration for Economical Capacity Withholding
	4.5 Pure GenCo Learning Experiments
	4.6 Price-Sensitivity Experiments without GenCo Learning
	4.7 Price-Sensitivity Experiments With GenCo Learning
	4.8 GenCo Price Cap With and Without Learning 
	4.9 LMP Spatial Cross-Correlations
	4.9.1 Correlation Experiment Preliminaries  
	4.9.2 GenCo Cross-Correlations  
	4.9.3 GenCo-LMP Cross Correlations  
	4.9.4 LMP-LMP Cross Correlations  
	4.9.5 Empirical Evidence on LMP Correlations  


	5. ISO NET SURPLUS STUDY
	5.1 Introduction
	5.2 Experimental Design
	5.3 5-Bus Benchmark Case
	5.4 5-Bus Case with Learning and Price-Sensitive Demand
	5.5 30-Bus Benchmark Case
	5.6 30-Bus Case with Learning
	5.7 Comparisons of Empirical ISO/RTO Day-Ahead Market Net Surplus
	5.8 Concluding Remarks  

	6. GENCO CAPACITY WITHHOLDING STUDY
	6.1 Introduction
	6.2 5-Bus Benchmark Case: No Economic or Physical Capacity Withholding
	6.3 Experimental Design and GenCo Learning Calibration
	6.3.1 Experimental Design
	6.3.2 GenCo Learning Calibration for Economic Capacity Withholding
	6.3.3 GenCo Learning Calibration for Physical Capacity Withholding

	6.4 5-Bus Economic Capacity Withholding Experiments
	6.4.1 Economic Capacity Withholding by One GenCo
	6.4.2 Economic Capacity Withholding by Two GenCos

	6.5 5-Bus Physical Capacity Withholding Experiments
	6.5.1 Physical Capacity Withholding by One GenCo
	6.5.2 Physical Capacity Withholding by Two GenCos

	6.6 5-Bus Combined Economic and Physical Capacity Withholding Experiments
	6.6.1 Combined Economic and Physical Capacity Withholding by One GenCo
	6.6.2 Combined Economic and Physical Capacity Withholding by Two GenCos

	6.7 Comparisons of Results
	6.7.1 One GenCo Case Comparison
	6.7.2 Two GenCos Case Comparison
	6.7.3 Conclusion


	7. CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future Work

	A. AMES WHOLESALE POWER MARKET TEST BED
	A.1 Introduction
	A.2 Key Features
	A.3 Running AMES Simulation Experiments  
	A.4 Development Tools Used
	A.5 Licensing and Release
	A.6 Applications to Date

	B. SYSTEM DATA FOR 5-BUS TEST SYSTEM
	C. SYSTEM DATA FOR 30-BUS TEST SYSTEM
	BIBLIOGRAPHY

